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Abstract: An efficient method for studying the forced vibration of functionally graded conical shell is 
demonstrated. Hamilton’s principle with the Rayleigh-Ritz method is utilized to obtain the equation of motion of the 
FG conical shell. A group of simpler principal vibration modes of the conical shell with two simply supported 
boundaries are demonstrated. The natural frequencies of FG conical shell can be obtained by solving eigenvalue 
problem of the equation of motion and the steady responses of forced vibration can also be obtained by solving the 
equation of motion. The exponential variation of material properties in the thickness direction of the plate is 
considered. Numerical comparisons with the outcomes in the open literature are done to confirm the present 
methodology. In addition, the forced vibration responses of a functionally graded conical shell are also computed.  
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Introduction 

The thought of the construction of 
functionally graded materials (FGMs) was first initiated 
in 1984 by a team of Japanese materials researchers 
Koizumi M. (1993). From 20 years ago, FGMs have 
tried a remarkable raise in terms of investigation and 
development programs. Worldwide dispersion and 
division of the outcomes through publications, 
international symposiums and exchange programs 
attests to this increasing development. They have many 
acquired requests in rocket engine pieces, space plan 
body, nuclear reactor components, first wall of fusion 
reactor, engine components, turbine blades, hip implant 
and other engineering and technological applications. A 
detailed discussion on their design, processing and 
applications can be found in Refs. (Obata Y et al., 1993; 
Wetherhold RC et al., 1996; Suresh S et al., 1998; 
Miyamoto Y et al., 1999; Kieback B et al., 2003) 
Commonly, FGMs are constructed from a mixture of 
metals and ceramics and are more characterized by a 
continuous and smooth change of the mechanical 
properties from one surface to another. In addition, a 
mixture of ceramic and metal with a continuously 
changing volume fraction can be easily fabricated. (see, 
for instance, (Miyamoto Y et al.,1999; Reddy JN et 
al.,1998; Liew KM et al.,2002)) FGMs now have been 
considered as one of the most encouraging candidates 
for coming smart composites in numerous engineering 
fields such as fast computers, aerospace, biomedical 
industry, and environmental sensors. Regarding the 
obvious significance in practical applications, the 
vibration behaviors of FGM shell structures have 
attracted increasing research effort. Conical shells are 
greatly utilized in many engineering applications. It is 

essential to do the analysis of vibration of conical shells 
for the purpose of vibration control, dynamical design 
and others. To the present time, there are many papers 
that have been published on the vibration problems of 
conical shells (Khatri and Asnani, 1995; Goldberg et al., 
1960; Chang, 1978; Serpico, 1963). Lam and Li (1999) 
and Li (2000) studied the frequency characteristics of 
free vibration of rotating conical shell using the 
Galerkin method. Fares et al. (2004) inquire into the 
design and active vibration control of composite 
laminated conical shells. They utilized the Liapunov–
Bellman theory to acquire the controlled deflections of 
the shells. Liew et al. (2005) analyzed the free vibration 
of thin conical shells utilizing the element-free kp-Ritz 
method and discussed the frequency properties under 
different parameters. Chai et al. (2006) investigated the 
spatially distributed microscopic control characteristics 
of distributed actuator patches on a rocket conical shell. 
Sofiyev et al. (2008) studied the vibration and stability 
of orthotropic conical shells with non-homogeneous 
material properties under a hydrostatic pressure. It 
should be noted that Liew and Lim (Liew et al.,1995; 
Lim and Liew, 1996, 1995) methodically investigated 
the free vibration of shallow conical shells using the pb-
2 Ritz method. Despite the fact that many studies on the 
dynamic problems of the conical shells have been 
published, the forced vibration problems of the 
functionally graded conical shells have to be 
comprehensively studied. Through the forced vibration 
analysis, an efficient way for computing the forced 
vibration responses can be acquired and further utilized 
in the vibration control and dynamic designs of the 
conical shells. 
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Commonly, the equation of motion of the 
conical shell is extremely complex and some of the 
coefficients of the equation of motion are variables 
(Soedel, 1981). Therefore, it is difficult to analytically 
solve the equation of motion of the conical shell. In this 
study, an efficient method for the forced vibration 
analysis of functionally graded conical shells is 
presented. The steady responses of the forced vibration 
of functionally graded conical shells can also be 
acquired by solving the equation of motion. In addition, 
the effect of changing (g) gradient index on the force 
vibration responses is studied. 
2. Functionally gradient materials  

A thin, isotropic and functionally graded conical 
shell with constant thickness is assumed. Fig. 1 shows the 
schematic diagram of the conical shell. The two 
boundaries of the conical shell are simply supported (S-S). 
In which for functionally graded materials with two 
constituent materials Poisson ratio υ is assumed to be 
constant through the thickness, whereas the variations 
through the thickness of Young’s modulus E(η) and the 
mass density per unit volume ρ(η) . According some 
investigators (Nie et al., (2007); Zhong et al., (2003); Gu 
et al., (1997)) assumed the exponential variation of 
material properties in the thickness direction of the plates, 
can be written as 

E(η) = E�e�(
η
�

�
�
�

)                                             (1)   

ρ(η) = ρ
�

e�(
η
�

�
�
�

)                                              (2)   

in which η is the thickness coordinate ( 
��

�
≤ η ≤

�

�
 ), 

and � ≥ 0  is the gradient index, and E�  denote the 
Young’s module of the bottom materials, ρ

�
 denote the 

mass density per unit volume of the bottom materials. 

Figure 1. The schematic diagram of a FGM conical shell 
(a) The geometry and the curvilinear surface and Cartesian 
Coordinate Systems; (b) the infinitesimal shell element 
and the corresponding stresses. 
 
3. Equation of motion of FG conical shell 

A thin and FG conical shell with constant 
thickness is assumed. Figure 1 shows the schematic 
diagram of the conical shell. The two boundaries of the 

conical shell are simply supported (S-S). The 
corresponding curvilinear surface coordinates O − ξζη 
and Cartesian coordinates � − ���  are also shown in 
Figure 1. The curvilinear surface coordinates are limited 
to be orthogonal ones which coincide with the lines of 
principal curvature of the neutral surface. For conical 
shells, the lines of principal curvature of the neutral 
surface are the circles (ζ-axis) and parallel meridians (ξ-
axis). 
 
For a thin conical shell, plane stress condition is 
assumed and the constitutive relation is given by 
{�}= [� ]{�},                                                                 (3) 
Where {�} is the stress vector, {�} is the strain vector 
and [� ] is the reduced stiffness matrix. The stress vector 
and the strain vector are defined as 

{�}� = {��� ��� ��� ���},                                        (4) 
{�}� = {��� ��� ��� ���},                                          (5) 

Where ��� and ��� are the stresses in � and ζ directions, 
and ��� is the shear stress on the ξζ plane, and ��� is the 
shear stress on the ζη plane. ��� and ���  are the strains 
in the ξ and ζ directions, and ���  is the shear strain on 
the ξζ plane, and ��� is the shear strain on the ζη plane. 
The reduced stiffness matrix is defined as 

[� ]= �

���   ���   0    0
���   ���   0    0
0       0     ���  0
0      0     0  ���

�                                           (6) 

For FGM materials the reduced stiffness ��� (�, � =

1, 2 and 6) are defined as 

��� = ��� =
�(�)

(1 − � �)
, 

��� =
��(�)

(1 − � �)
,                                                           (7) 

��� =
�(�)

2(1 + �)
, 

Where E(�)  is the Young’s modulus and �  is the 
Poisson’s ratio. According Soedel (1981) and Love’s 
shell theory, the components in the strain vector {�} are 
defined as 
��� = �� + ���, ��� = �� + ���, ��� = � + 2��, 
 ��� = ���                                                                       (8) 
where ��, ��, � and ��� are the references surface strains, 
and ��, �� and �  are the surface curvatures. These 
surface strains and curvatures are defined as 
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�              (10) 

For a thin conical shell the force and moment resultants 
are defined as 

���, ��, ���, ����= � {���, ���, ���, ���} ��,
�/�

��/�

(11) 

�� �, ��, ����= � {���, ���, ���}� �� ,
�/�

��/�

       (12) 

Substituting Eq. (3), with substitution from Eq. (8), into 
Eqs. (11) and (12), the constitutive equation is obtained 
as 
{� }= [�]{�},                                                              (13) 
where {� } and {�} are, respectively, defined as 
{� }� = ��� �� ��� ��� � � � � � ���,                   (14) 

{�}� = {�� �� � ��� �� �� 2�},                                (15) 
and [�] is defined as  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

A��     A��     0     0     B��     B��     0
A��     A��     0     0     B��     B��     0
0         0       ���   0     0          0     ���

0        0       0      ���  0         0          0
B��    B��    0      0      D��     D��     0
B��    B��     0     0     D��     D��     0
0        0      ���    0      0        0      ��� ⎦

⎥
⎥
⎥
⎥
⎥
⎤

                 (16) 

where ���, ��� and ���  (i, j=1, 2 and 6) are the 

extensional, coupling and bending stiffnesses defined as 

����, ���, ����= � ���{1, �, ��}

�
�

�
�
�

��.                     (17) 

Notice that, unlike a homogeneous isotropic conical 
shell where the coupling stiffnesses ��� do not exist, the 

���  are present in the constitutive equation for a 

functionally graded conical shell. This arises because of 
material properties asymmetry about the mid-plane, 
when ��� are a function of Z for functionally gradient 

materials. Notice that, unlike a homogeneous isotropic 
conical shell where the coupling stiffnesses ��� do not 

exist, the ��� are present in the constitutive equation for 

a functionally graded conical shell. This arises because 
of material properties asymmetry about the mid-plane, 
when ��� are a function of Z for functionally gradient 

materials. The strain energy and kinetic energy and 
virtual work of a conical shell can be written as 

� =
1

2
� � � ρ(η) ��

∂u

∂t
�

�

+ �
∂v

∂t
�

�

+ �
∂w

∂t
�

�

�
�

��

��

�

�/�

��/�

 

� ����� ������ ,                                                          (18) 

� =
1

2
� � � {�}�

�

��

��

�

�/�

��/�

[�]{�}� ����� ������(19)  

�� = � � (���� + ���� + ���� )
�

��

��

�

� ����� ����  

(20) 
where q�, q� and q� are the distributed load components 
per unit area along the ξ,ζ, and η  directions and are 
assumed to act on the neutral surface of the shell. The 
units of q�, q� and q� are [�/� �]. For simply supported 
conical shell, the boundary conditions at both ends can 
be written as 
�(��, �, �) = �(�, �, �) = 0,  
� (��, �, �) = � (�, �, �) = 0 
���(��, �, �) = ���(�, �, �) = 0, 
 � ��(��, �, �) = � ��(��, �, �) = 0,                           (21) 
In the Rayleigh–Ritz method, the shape of deformation 
of the continuous system is approximated using a series 
of trial shape functions that must satisfy the geometric 
boundary conditions. The displacements can be written 
as 

�(�, �, �) = � � ���(�, �)���(�)

�

���

�

���

= � �(�, �)�(�),  

�(�, �, �) = � � ���(�, �)

�

���

�

���

���(�) = �� (�, �)�(�), 

� (�, �, �) = � � � ��(�, �)���(�) = � �

�

���

�

���

(�, �)�(�), 

(22) 
Where U, V and W are the trial shape functions or the 
principal vibration modes, and p, r, s are the generalized 
coordinates or modal coordinates. It is necessary to 
demonstrate the formulations of the principle mode 
shapes U, V and W in Eq. (22). A number of vibration 
mode shapes of conical shells have been utilized. For 
instance, Lam and Li (1999) and Li (2000) utilized a 
kind of vibration modes of conical shells that are similar 
to those of cylindrical shells. The main mode shapes of 
conical shells with simply supported boundaries can be 
declared as 

���(�, �) = ����
��(����)

����
����(��), 

���(�, �) = ����
��(����)

����
����(��), 

� ��(�, �) = ����
��(����)

����
����(��), 

� = 1,2, … , � ; � = 1,2, … , �,                  (23) 
where i and j denote the wave numbers in the meridional 
and circumferential directions. 
…
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Hamilton’s principle is written by 

� δ(T − U )dt + � δWdt = 0
��

��

��

��

,                         (24) 

where T the kinetic energy, U strain energy and W work 
(Khatri and Asnani, 1995; Mecitog˘lu, 1996) , �� and �� 
are the integration time limits,  �(0) denotes the first 
variation. Then the kinetic energy, strain energy and 
work are expressed in terms of the generalized 
coordinates and displacement shape functions. 
Substituting Eq. (22) into Eq. (18), the kinetic energy is 
written by 

� =
�

�

�� �

��
� �

��

��
+

�

�

���

��
� �

��

��
+

�

�

���

��
� �

��

��
                (25) 

where M �, M� and M �  are the modal mass matrices of 
the functionally graded conical shell and they are listed 
in Appendix A. Substituting Eq. (22) into (19), the strain 
energy is written by 

� =
�

�
�� ��� +

�

�
�� ��� +

�

�
�� ��� +

�

�
�� ��

� � +  
�

�
�� ��� +

�

�
�� ��� +

�

�
�� ��

� � +
�

�
�� ��

� � + 
�

�
�� ���,                                                                (26) 

where ��, ��, … , ��  are the modal stiffness matrices 
which are also presented in Appendix A. Substituting 
Eq. (22) into Eq. (20), the virtual work is expressed as 
�� = � ������ + ������� + �������,                (27) 

where ���, ��� and ���  are the forcing matrices which 
are also given in Appendix A. Substituting Eqs. (25), 
(26) and (27) into Eq. (24) and fulfilling the variation 
operation in terms of p, r and s. They can be acquired as 

� �
� ��

��� + � �� = �,                                                     (28) 

where M � the generalized mass matrix, K� the stiffness 
matrix , Q the forcing matrix and written by 

� � = �
� �      0       0  
0       � �      0  
0        0       � �

� , �� = �

��      ��       ��

��
�       ��      ��

��
�       ��

�      ��

� 

� = [�����   �����   �����]�, 

� = [��    ��   �� ]� ,                                                   (29) 
a solution of Eq. (28) is in the form 
�(�) = �����,                                                            (30) 
 
where � is the characteristic values or the eigenvalue 
and X� is the eigenvector. Substituting Eq. (30) into the 
homogeneous differential equation of Eq.(28) leads to 
the following standard eigenvalue problem: 
(� ��� + � �)�� = 0,                                                 (31) 
The imaginary parts of the eigenvalues are the natural 
frequencies of the functionally graded conical shell. The 
distributed loads are assumed to be harmonic and 
deviate from symmetry. Since this is never exactly true 
for engineering applications to assume that the load does 
where ω  is the frequency of the dynamic loads and 
q��, q�� and q�� are the amplitudes. The steady state 

solution of Eq. (28), according to the application of the 
external dynamic loads, can be expressed as 
��(�) = �������,   � = 1,2, … ,3��,                    (33) 
where �� is the amplitude that it should be determined. 
Substituting Eq. (33) into Eq. (28) yields 
(�� − � �� �)� = � �,                                               (34) 
Where 
� = [��, ��, … , ���� ]� and �� =
[������, ������, ������]� .  The amplitudes A�  of 

��(�)can be found by solving Eq. (34). Then, the steady 
state responses of the functionally graded conical shell 
can be found. 
4. Results and discussions 
4.1. Validation of the present method 

So that to confirm the present methodology, the results 
are compared with the open literature in Table 1. In the 
numerical calculations, the non-dimensional frequency 
parameter is defined as (Lam and Li, 1999; Liew et al., 
2005; Irie et al., 1984).  

� = �����
��(����)

��
,                                                 (35) 

Table 1. Comparisons of frequency parameter f for the 
conical shell with S-S boundaries (m = 1, Metal). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

not deviate from symmetry. The distributed loads are 
written by 

��(�, �, �) = ��� (�)�����, ��(�, �, �) = ���(�)����� 
��(�, �, �) = ���(�)�����,                                      (32) 

 n 
Irie et 

al 
(1984) 

Lam 
and Li 
(1999) 

Present 

α� = 30� 

2 0.7910 0.8420 0.84307 
3 0.7284 0.7376 0.74163 
4 0.6352 0.6362 0.64194 
5 0.5531 0.5528 0.55902 
6 0.4949 0.4950 0.50079 
7 0.4653 0.4661 0.47079 
8 0.4654 0.4660 0.46921 
9 0.4892 0.4916 0.49318 

α� = 45� 

2 0.6879 0.7655 0.76424 
3 0.6973 0.7212 0.72108 
4 0.6664 0.6739 0.67467 
5 0.6304 0.6323 0.63364 
6 0.6032 0.6035 0.60492 
7 0.5918 0.5921 0.59311 
8 0.5992 0.6001 0.60045 
9 0.6257 0.6273 0.62691 

α� = 60� 

2 0.5772 0.6348 0.63423 
3 0.6001 0.6238 0.62361 
4 0.6054 0.6145 0.61459 
5 0.6077 0.6111 0.61128 
6 0.6159 0.6171 0.61721 
7 0.6343 0.6350 0.63479 
8 0.6650 0.6660 0.66525 
9 0.7084 0.7101 0.70873 



Life Science Journal 2013;10(1)                                      http://www.lifesciencesite.com 

 

3208 
 

Figure 2. The amplitude of the displacements in the 

ξ,ζ and η directions at the position (�� +
�

�
 ,

�

�
) of the 

middle surface of functionally graded conical shell 
varying with the frequency � of the dynamical load. 
(a) In the � direction;(b)in the � direction;(c)in the � 
direction 

(a) The Amplitudes of the Displacement u (m) 
for g=0, 1, 2  
 

 
. 
. 
 

 

 
(b) The Amplitudes of the Displacement v (m) 

for g=0, 1, 2  
 

 
 
 

(C) The Amplitudes of the Displacement v (m) for 
g=0, 1, 2  

 
5. Conclusions 

A study on the vibration of functionally graded 
(FG) conical shells made of aluminum an
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 where ��is the natural frequency of the conical shell 
in radians per second.  
 

 
 
 

 
 
 

 
 
 

The constituent material properties of the 
functionally graded conical shell is E� = 70 GPa, 
ρ

�
= 2710 kg/m�    and μ = μ

�
= 0.3 for the 

material Al. The variation through the thickness of 
Young’s modulus E(η)   and mass density per unit 
volume ρ(η) are the same as Eqs. (1) and (2). The 
structural parameters are h =0.004 m, h/a� =
0.01,  (l − l �)sinα� / a� =0.25. For the case of the 
meridional wave number m = 1  and semi-vertex 
cone angles α� =  30�, 45�, 60�  the frequency 
parameters computed by Eq. (35) are listed in Table 
1. Also the corresponding outcomes by Lam and Li 
(1999) and Irie et al. (1984) are listed in Table 1. It is 
clear from (Table 1) that the frequency parameters 
acquired by the Rayleigh-Ritz method are in good 
agreement with those in the open literature, which 
confirms the validity of the present analytical 
method. In addition, the principal mode shapes 
declared by Eq. (23) can be utilized for the conical 
shells with two simply supported boundaries. The 
forced vibration responses of functionally graded 
conical shell with two simply supported boundaries 
are computed. The structural parameters of the 
functionally graded conical shell sample are identical 
to those utilized in Section 3.1. The semi-vertex cone 
angle is α� = 30� . The radii at the two ends are 
a� = 0.3 m and a� = 0.4 m. l�= 0.6 m and l= 0.8 m 
are the position coordinates of the conical shell in the 
curvilinear surface coordinates O- ���. Thus the 
length of the conical shell is s = l − l � = 0.2 m. 
q��, q�� and q��  are the amplitudes of the external 
dynamic loads that all of them equal to 10 Pa. In the 
computation, m and n in Eq. (23) are all set to be 1. 
The amplitudes of the displacements in the ξ,ζand η 
directions of the middle surface of functionally 

graded conical shell at position (l� +
�

�
,

π

�
)  varying 

with the frequency ω (Hz) of external dynamic loads 
and the gradient index g are shown in Figure 2. There 
are some peak values of the displacements in Figure 
2 that relate to the resonant responses of the 
functionally graded conical shell under the external 
dynamic loads. In addition, it is clear that the 
displacements in the frequency-response curves are 
reduced when (g) gradient index increase from 0 to 2. 
  
5. Conclusions 

The purpose of the investigation described 
in this paper is to determine the forced vibration 
responses of functionally graded conical shell under 
harmonic load. it is clear that the displacements in the 
frequency-response curves are reduced when g 
increase from 0 to 2. Hamilton’s principle with the 
Rayleigh–Ritz method is utilized to obtain the 
equation of motion of the functionally graded conical 
shell. 
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The eigenvalue problem of the equation of 
motion is solved to obtain the natural frequencies of 
the functionally graded conical shell. The equation of 
motion is solved to obtain the steady responses of 
forced vibration. To validate the present method, 
numerical comparisons with the results in the open 
literature are done that show very good agreement. In 
addition, the forced vibration responses of 
functionally graded conical shell varying with the 
external dynamical loads and gradient index are 
calculated. This method can be utilized for other 
kinds of boundary conditions of the conical shell. 
 
Appendix A.    The expressions of the modal mass, 
modal stiffness and forcing matrices in Eqs. (29) are 
given by  

M � = sinα� � � � UU �ρ(η)ξdηdξdζ
�/�

��/�

�

��

�π

�
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