#### Proteomic Profiling and Protein Identification by 2-DE gel electrophoresis combined with MALDI-TOF Mass Spectrometry in Rat hepatocyte Nucleus

Xianguang Yang<sup>1, 2</sup>, Chunling Yan<sup>1, 2</sup>, Dongdong Sun<sup>1, 2</sup>, Xiaofang Geng<sup>1, 2</sup>, Yanjie Yang<sup>2</sup>, Cunshuan Xu<sup>1,2\*</sup>

1. College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China

2. Co-constructing Key Laboratory by Province and the MOST for Cell Differentiation Regulation, Xinxiang, Henan

453007, China

E-mail: cellkeylab@163.com

Abstract: More and more proteomics research focusing on nucleoprotein. In this article, the proteomic profiling of Rat hepatocyte nucleus was showed by 2-D PAGE and a total of 204 kinds of nucleoproteins were identified by MALDI-TOF Mass Spectrometry. Addition to housekeeping protein, low kurtosis transcription factors were enriched and identified too. Ingenuity Pathway Analysis (IPA) showed that these nucleoproteins were involved in the rat liver cell cycle regulation, DNA replication, recombination and damage repair, cell assembly and organization, cell development, nervous system development and function, cancer, cardiovascular system development and function, cell death and survival, cell morphology, Cell-To-Cell signaling and interaction. These results can provide more information for a comprehensive understanding to the function of nucleus; on the other hand, the results lay the foundation for the analysis of nucleoproteins expression varieties and help to look for the biomarker of disease diagnosis and therapies.

[Xianguang Yang, Chunling Yan, Dongdong Sun, Xiaofang Geng, Yanjie Yang, Cunshuan Xu. Proteomic Profiling and Protein Identification by 2-DE gel electrophoresis combined with MALDI-TOF Mass Spectrometry in Rat hepatocyte Nucleus. *Life Sci J* 2013:10(1):3183-3191]. (ISSN: 1097-8135). http://www.lifesciencesite.com. 402

Keywords: Rat hepatocyte, Nucleoprotein, Proteomics, 2-D gel electrophoresis, MALDI-TOF MS

#### 1. Introduction

Proteomics has emerged as a powerful tool towards a deep understanding of human and mammalian disease. Compared to genomics, proteomics provides not only information at a mechanistic level but can also capture changes in protein activity measured as post-translational modifications (Fernando et al., 2013; Tung et al., 2013). In fact the transcriptome does not account for the post-transcriptional and post-translational regulation of protein expression. Most studies reveal a poor correlation between protein expression and changes in transcript level (Pandey and Mann, 2000). Proteomics becoming an effective method for the global recognition and identification of proteins expressed in cell or tissue, and is able to identify the expression pattern and functional modes of the proteins. Proteomics mainly include three types: expression proteomics, structural proteomics and functional proteomics (Schmid, 2002; Patterson and Aebersold, 2003; Aggarwal and Lee, 2003). In recent years, proteomics based on two-dimensional electrophoresis has walked into the subcellular level. Combined subcellular fractionation and multi-stage extraction sample preparation, Organelle proteome has become a new hot spot in proteomics research (Duclos and Desjardins, 2011; Paulo et al., 2013; Mulvey et al., 2013).

As the largest and most important organelles in eukaryotic cells, the nucleus is the center of genetic control and metabolic regulation in the cell (Misteli and Spector, 1998; Dundr and Misteli, 2001). As a direct reflection of the functional genes, there are numerous functional proteins in the nucleus, which have been implicated in essential processes such as transcription and splicing. They are the most important part of the cellular structures and play important role during life activities in the cell (Lamond and Earnshaw, 1998; Lewis and Tollervey, 2000). Proteins of the nucleus are dynamic, temporal and adjustable. Proteins involved in diverse nuclear processes move rapidly throughout the entire nucleus and rapidly associate and dissociate with nuclear compartments (Phair and Misteli, 2000), some involved in transcriptional regulation, some involved in the transport of nuclear and cytoplasm. Nucleus proteomics research has started more than a decade (Jung et al, 2000). Nuclear proteomics analysis found a variety of diseases are associated with the nucleoprotein (Shakib et al., 2005; Oazi et al., 2011).

Here, we performed a detailed proteomic analysis of rat hepatocyte nuclei, establishing and optimizing the nucleoprotein proteomics technology system based on two-dimensional electrophoresis combined with MALDI-TOF mass spectrometry. IPA (Ingenuity Pathway Analysis) software was used to analysis the physiological functions of nucleoprotein. Our analysis provides unprecedented insight into the rat hepatocyte nuclei and will be of great benefit to understand the structure and function of nucleus.

### 2. Material and Methods

# 2.1 isolation and immunochemical identification of hepatocytes

Hepatocyte isolation from rat livers is carried out with a "two-step" collagenase procedure (Vondran et al., 2008). The procedure involves the initial perfusion of the liver with a warm (37 °C) divalent ion-free, EGTA-containing, isotonic buffer (Step 1) to remove blood and to loosen cell-cell junctions, followed by perfusion with a warm, isotonic, collagenase solution (Step 2) to dissociate the liver parenchyma into single cells. After digestion, the cells are harvested by low-speed centrifugation. A density gradient of 60% Percoll is used to enrich hepatocytes.

A few purified hepatocytes were fixed with 10% formaldehyde for 30 min, and then smeared onto glass slides. When the cells dried on glass slides, microwave antigen retrieval was performed. The sections were incubated with 1:200 dilution (V/V) of ALB antibody (Santa, USA) overnight at 4°C and then incubated with 1:5000 dilution (V/V) of biotin-labeled secondary antibody (Boster, China) at 37°C for 60 min. The system was hybridized with streptavidin-biotin complex (SABC, Boster, China) at 37°C for 30 min. DAB stain was performed after rinsed by PBS and followed with hematoxylin stain. After gradient dehydration, transparent, and sealed by neutral gum, the results were observed and photographed by microscopy.

# 2.2 Isolation and identification of hepatocytes nucleus

Nucleus isolation from hepatocytes is performed with a reported procedure (Matunis, 2006). Working in a 4 °C cold room, all buffers are kept on ice at near 0°C, chilled hepatocytes are added to 20 ml of freshly prepared, ice-cold buffer A (0.25 M sucrose, 50 mM Tris-HCl (pH 7.5), 25 mM KCl,5 mM MgCl2, 2 mM DTT, 1×protease inhibitors). The hepatocytes in buffer A are homogenized using a 20 ml capacity Potter-Elvehjem homogenizer, then centrifuged at 800g for 20 min to obtain a crude nuclear pellet. During the centrifugation, 5 ml of buffer B (2.3 M sucrose, 50 mM Tris-HCl (pH 7.5), 25 mM KCl, 5 mM MgCl2, 2 mM DTT, 1×protease inhibitors) is added to the bottom of 6 Beckman SW28 ultracentrifuge tubes. Following centrifugation, the supernatant is removed carefully avoid disturbing the loose nuclear pellet. The nuclear pellet is gently resuspended in ice-cold buffer B and added 30 ml to each of the six SW28 ultracentrifuge tubes, overlaying the 5 ml of previously added buffer B. Samples are centrifuged at 27,000 rpm (141,000g) at 4°C for 1 h. Following centrifugation, remove and discard the layer of lipid formed at the top of the tubes. The remaining supernatant is poured off by rapidly

inverting the tubes, and residual liquid is allowed to drain from the tubes by placing them upside down on paper towels. Gimsa stain was performed to identify the purity of isolated nucleus.

# 2.3 Sample preparation for 2D gel electrophoresis (2-DE)

The protein of nucleus was homogenized in lysis buffer containing 7 M urea, 2 M thiourea, 4% (w/v) CHAPS, 1% (v/v) DTT, 2% (v/v) immobilized pH gradient buffer (IPG buffer, pH 3–10), and 1% (v/v) protease inhibitor cocktail. The nuclear lysis was confirmed by the addition of Trypan Blue and examination under a microscope. The homogenized mixture was centrifuged at 40,000 × g for 1 h at 4°C, and then the supernatants were collected and stored at -80°C until further analysis. The protein concentration was measured using the PlusOne 2-D Quant kit (GE Healthcare, USA).

### 2.4 Two-dimensional gel electrophoresis

2-Dimensional gel electrophoresis (2-DE) was performed as described previously (Huo et al.2008). Isoelectric focusing (IEF) was carried out on an Ettan IPGphor III (Amersham Bioscience) with 24-cm immobilized pH gradient strips (pH3~10 NL; Amersham Bioscience). Samples containing 500 ug of protein were mixed with rehydration solution containing 8 M urea, 2% CHAPS, 20 mM DTT, 0.5% (v/v) IPG buffer (pH 3–10), and 0.001% bromphenol blue. Focusing parameters were conducted by stepwise increase of the voltage as follows: 30 V for 12 h, 200 V for 1 h, 500 V for 1 h, 1000 V for 1 h, 3500 V for 1 h, and 8000 V for 12 h. Strips were equilibrated at room temperature for first 15 min in equilibrated solution containing 6 M urea, 50 mM Tris-HCL, 30% (v/v glycerol, 2% (w/v) SDS, and 1% (w/v) DTT, and incubated for another 15 min in similar solution by replacing DTT with 2.5% (w/v) iodoacetamide. The second dimension separation was run on 11% SDS gel in Ettan DALT6 (GE Healthcare, Sweden) with 1 W per gel for first 60 min and followed by 13 W per gel until the bromphenol blue line reached the bottom of the gels.

## 2.5 Image scanning, analysis, and in-gel digestion

All gels were visualized by Coomassie blue G250 staining and scanned at 600 dpi resolution (ImageScan III, Epson, USA). Spots detected by ImageMaster 2D Platinum 6.0 software (Amersham Biosciences).The protein spots were excised from the gel, diced into small pieces of approximately 1 mm<sup>3</sup>, washed three times with ACN, dried for 30 min at room temperature and digested according to the reported procedure (Cheng et al., 2005).

## 2.6 MALDI-TOF MS and PMF

For acquisition of MS peptide maps of the proteins, 1  $\mu$ l aliquots of the generated cleavage products were dispensed onto the MTP AnchorChip<sup>TM</sup>

800/384 sample support, followed by 1  $\mu$ l of CHCA matrix solution (solution of a-cyano-4-hydroxycinnamic acid in 35% ACN, 0.1% TFA). Samples were analyzed on a AutoFlex III MALDI-TOF mass spectrometer (Bruker Daltonics, Germany). All spectra were acquired in positive-ion reflector mode. Peptide mass fingerprint (PMF) and MS data were analyzed using the MASCOT search engine version 2.3 (Matrix Science, London, UK).

# 2.7 Bioinformatics analysis

Sequences of identified proteins were submitted to NCBI BLAST server to find similar sequences. The online software COMPUTE PI/MW (http://web.expasy.org/compute\_pi/) tool was used to predict and verify the molecular weight (mw) and isoelectric point (pI). Gene ontology (GO) annotations for identified proteins based on MetaCore and Ingenuity Pathway Analysis (IPA) analysis.

#### 3. Results

#### 3.1 immunochemical identification of hepatocytes

To verify the purity of isolated hepatocytes, we examined the expression of hepatocytes specific markers by cell immunochemical staining. Almost all hepatocytes were positive for ALB antibody (Figure.1). Statistical results showed that about 97% of all cells were just positive for albumin expression.

#### **3.2 Purity of isolated hepatocytes nucleus**

The crude nucleus from the separate process and final obtained pure nucleus were examined by Gimsa staining; microscopic statistics showed the finally obtained nucleus get purity above 98%, no intact cell can be seen on the slide (Figure.2).



Figure 1. Immunochemical staining patterns for ALB in theisolated hepatocytes. (400X)



Figure 2. Purity of isolated hepatocytes nucleus (100X)

Gimsa staining of isolated hepatocytes (A), crude nucleus in buffer A after homogenized (B), crude nucleus after centrifuged at 800g (C) and finally obtained pure nucleus (D).



Figure 3. 2-DE profile of hepatocytes nucleoprotein on Coomassie blue-stained gel over the pH ranges 3–10 NL. The numbers in the figure are the spot of 204 kinds of nucleoproteins identified by MALDI-TOF MS

# 3.3 2-DE map of hepatocytes nucleoprotein and MALDI-TOF MS

The nucleoprotein from hepatocytes nucleus was analyzed by 2-DE to draw a protein profile by ImageScan scanner III. The proteins were well represented by 2-DE separations across a gradient of pH 3-10 NL. 2-DE map constructed with Coomassie blue G250-stained gels showed a total of 627 protein spots were detected by ImageMaster 2D Platinum software (Figure.3). Protein gel spots were excised and prepared for MALDI-TOF MS analysis. MALDI-TOF MS identification and database search (http://www.psort.org/) predicted that 204 proteins were subcellular located to nucleus (Table.1).

### 3.7 Bioinformatics analysis

COMPUTE PI/MW used to predict and verify the molecular weight (mw) and isoelectric point (pI), results were shown in Table1. In order to better understand the biological functions of these nucleoproteins, gene ontology annotation was performed by MetaCore and Ingenuity Pathway Analysis (IPA) analysis. The results showed that the nucleoprotein involved in important physiological

activities in rat liver (Figure.4). Ingenuity Pathway Analysis showed that these nucleoproteins were involved in the process of cell cycle regulation, DNA replication, recombination and damage repair, cell assembly and organization, cell development, nervous system development and function, cancer. cardiovascular system development and function, cell death and survival, cell morphology, Cell-To-Cell signaling and interaction, Cell-mediated immune response, Cellular growth and proliferation, and so on. These proteins are classified according to the number of proteins involved in different molecular functions. In the identified nucleoproteins, 22 kinds were involved in the cell cycle, 18 kinds were involved in cell development, and 13 kinds were involved in nervous system development and function, 12 kinds were involved in DNA replication, recombination and damage repair, Details as shown below (Figure.5).



Figure 4. Top 10 of the physiological activities nucleoprotein involved in rat liver.



Figure.5 Classification according to the number of proteins involved in different molecular functions.

| Spot ID <sup>a)</sup> | Protein Name                                                            | Accession no. <sup>b)</sup> | MW(kDa)        | pl         | Mascot<br>score <sup>c)</sup> | MS<br>Coverage |
|-----------------------|-------------------------------------------------------------------------|-----------------------------|----------------|------------|-------------------------------|----------------|
| 1                     | Secemin-1                                                               | SCRN1 RAT                   | 46994          | 4.6        | 65                            | 21             |
| 2                     | Heat shock cognate 71 kDa protein                                       | HSP7C_RAT                   | 71055          | 5.2        | 56                            | 17             |
| 3                     | Exportin-1                                                              | XPO1_RAT                    | 124099         | 5.7        | 54                            | 4              |
| 1                     | Ankyrin repeat and LEM domain-containing                                |                             |                |            |                               |                |
| 4                     | protein 2                                                               | ANKL2_RAT                   | 104268         | 5.7        | 59                            | 93             |
| 5                     | RNA polymerase II-associated protein 1                                  | RPAP1_RAT                   | 156258         | 6.2        | 54                            | 16             |
| 6                     | Mediator of RNA polymerase II transcription                             |                             |                |            |                               |                |
| 0                     | subunit 24                                                              | MED24_RAT                   | 111606         | 6.3        | 54                            | 11             |
| 7                     | PREDICTED: Werner syndrome protein                                      | gi 293354272                | 157167         | 6.5        | 69                            | 16             |
| 8                     | Serine/threonine-protein kinase CST20                                   | STE20_CANAL                 | 132977         | 6.6        | 77                            | 28             |
| 9                     | ATP-dependent RNA helicase DDX42                                        | gi 157817897                | 102290         | 6.6        | 64                            | 7              |
| 10                    | Serine/threonine-protein kinase mTOR                                    | MTOR_RAT                    | 290662         | 6.8        | 65                            | 6              |
| 11                    | Structural maintenance of chromosomes protein                           |                             |                |            |                               |                |
|                       | 1A                                                                      | SMC1A_RAT                   | 143743         | 8.2        | 51                            | 13             |
| 12                    | transformation/transcription domain-associated                          |                             |                | ~ .        |                               |                |
| 4.0                   | protein                                                                 | gi 149034906                | 372069         | 9.4        | 50                            | 11             |
| 13                    | Nucleophosmin                                                           | NPM_RAT                     | 32711          | 4.5        | 65                            | 25             |
| 14                    | Secretoglobin family 1C member 1                                        | SG1C1_RAT                   | 10565          | 4.2        | 65                            | 12             |
| 15                    | Growth arrest and DNA damage-inducible                                  | 0. /FA D. T                 |                |            | ~~                            | 40             |
|                       | protein GADD45 alpha                                                    | GA45A_RAT                   | 18810          | 4.4        | 92                            | 18             |
| 16                    | Eukaryotic translation initiation factor 6                              | IF6_RAT                     | 27067          | 4.5        | 96                            | 37             |
| 17                    | DNA-directed RNA polymerase II subunit RPB3                             | gi 29336059                 | 31766          | 4.6        | 68                            | 21             |
| 18                    | GATA binding protein 4                                                  | GATA4_RAT                   | 1641           | 7.6        | 75                            | 6              |
| 19                    | heterogeneous nuclear ribonucleoproteins C1/C2                          | gi 283436180                | 32360          | 4.8        | 83                            | 11             |
| 20                    | Lamin-B1                                                                | LMNB1_RAT                   | 66794          | 5          | 52                            | 11             |
| 21                    | Splicing factor 3A subunit 3                                            | SF3A3_HUMAN                 | 59154          | 5.1        | 52                            | 9              |
| 22                    | similar to Lmnb2 protein                                                | LMNB2_Rat                   | 56757          | 5.2        | 47                            | 12             |
| 23                    | Protein cereblon                                                        | CRBN_RAT                    | 51700          | 5.2        | 60                            | 6              |
| 24                    | Protein QN1 homolog                                                     | QN1_RAT                     | 161131         | 5.5        | 54                            | 24             |
| 25                    | Dynactin subunit 1                                                      | DCIN1_RAI                   | 142583         | 5.5        | 56                            | 15             |
| 26                    | Heterogeneous nuclear ribonucleoprotein F                               | HNRPF_RAT                   | 46043          | 5.2        | 76                            | 14             |
| 27                    | Interferon-induced guanylate-binding protein 2                          | GBP2_RAT                    | 67637          | 5.4        | 64                            | 1              |
| 28                    | ruvB-like 2                                                             | gi 6755382                  | 51252          | 5.4        | 51                            | 10             |
| 29                    | BRCA1-A complex subunit RAP80                                           | UIMC1_RAT                   | 81585          | 6.3        | 82                            | 8              |
| 30                    | Listen a lusing N mathed transferred 57114                              |                             | 63243          | 7.1        | /8                            | 25             |
| 31                    | Histone-lysine N-methyltransferase EZH1                                 | EZHT_HUMAN                  | 87325          | 9.1        | 89                            | 34             |
| 32                    | B-cell CLL/lymphoma 6                                                   | D3ZIN3_RAT                  | 80582          | 9.5        | 53                            | 18             |
| 33                    | Large proline-rich protein BA12                                         | BAI2_RAI                    | 229421         | 10         | 91                            | 20             |
| 34                    | Zinc tinger RNA-binding protein                                         | ZFR_RAT                     | 118113         | 9.7        | 92                            | 13             |
| 35                    | Putative tRNA pseudouridine synthase                                    |                             | E200E          | 0.6        | 64                            | 14             |
|                       |                                                                         | TL05_SCHPU                  | 52065          | 9.0        | 64                            | 14             |
| 36                    | PREDICTED: vasoactive intestinal peptide                                |                             | 04470          | 44         | 60                            | G              |
| 27                    | Protoin kinggo C dolta turo                                             |                             | 04473<br>70724 | 0          | 00<br>70                      | 0<br>12        |
| 37                    | They transprintion factor TBX2                                          | TRV2 DAT                    | 70694          | 9          | 70                            | 13             |
| 30                    |                                                                         | IDAJ_KAI                    | 79064          | 0.0        | 01                            | 0              |
| 39                    | Na(+)/n(+) exchange regulatory colactor NnE-                            |                             | 27699          | 0          | 45                            | 0              |
| 40                    | RFZ                                                                     |                             | 124049         | 70         | 40                            | 9              |
| 40                    | TPM1 like protoin                                                       |                             | 01200          | 7.0<br>7.4 | 06                            | 25             |
| 41                    | aimilar to cofactor required for Sn1                                    |                             | 01500          | 7.4        | 90                            | 9              |
| 42                    | transprintional activator                                               |                             | 00690          | 10         | 100                           | 26             |
| 40                    | Sorino/orginino rich oplicing factor 5                                  | SPEE DAT                    | 39000          | 10         | 109<br>56                     | 20             |
| 43                    | zing finger protein 520                                                 | 3K3F3_KA1                   | 30967          | 12         | 50<br>64                      | 23             |
| 44                    | Crocked neck like protein 1                                             | 91234340130<br>CDNI 4 DAT   | 1910/          | 12<br>6 F  | 04<br>E1                      | აა<br>16       |
| 45                    | Stross 70 protoin, mitochondrial                                        | CRINET_KAT                  | 03049<br>74007 | 0.5        | 54<br>60                      | 10             |
| 40                    | Suess-ro protein, millochonunal                                         | GREIS_RAI                   | 14091          | ບ.ອ<br>ຄຳ  | 67                            | 1              |
| 4/                    | Argininosuccinato synthese                                              | 154A3_KA1                   | 41090          | 0.3        | 67                            | 34<br>0        |
| 4ð<br>40              | Arginnosuccinate synthase<br>Heterogeneous nuclear ribonucleoprotoin A2 | ASSI_KAI                    | 40/0Z          | 0.0<br>0 6 | 07<br>62                      | 9<br>14        |
| 49                    | DEDICTED: upotroom binding transprinting                                | RUAJ_RAT                    | 29000          | 9.0        | 02                            | 14             |
| 50                    |                                                                         |                             | 21002          | 0 5        | 70                            | 15             |
|                       |                                                                         |                             | 21902          | 9.0        | 19                            | 10             |

#### Table 1 – Proteins Identificated in hepatocyte nucleus of Rat

|                       | - i rotenis identificated in hepatocyte fiucieus  | oi kat (Continued)          |              |            | Mascot              | MS       |
|-----------------------|---------------------------------------------------|-----------------------------|--------------|------------|---------------------|----------|
| Spot ID <sup>a)</sup> | Protein Name                                      | Accession no. <sup>b)</sup> | MW(kDa)      | рІ         | score <sup>c)</sup> | Coverage |
| 51                    | Heart- and neural crest derivatives-expressed     |                             |              |            |                     | _        |
| 51                    | protein 2                                         | HAND2_RAT                   | 23765        | 9.8        | 76                  | 75       |
| 52                    | Zinc finger protein 90                            | ZFP90_RAT                   | 74046        | 9.9        | 62                  | 16       |
| 53                    | 40S ribosomal protein S6                          | RS6_RAT                     | 28834        | 12         | 50                  | 8        |
| 54                    | Signal recognition 54 kDa protein                 | SRP54_THENV                 | 47966        | 9.7        | 57                  | 10       |
| 55                    | Arrestin domain-containing protein 4              | ARRD4_RAT                   | 33880        | 9.4        | 116                 | 19       |
| 56                    | DNA topoisomerase I                               | TOP1M_RAT                   | 69652        | 10         | 68                  | 31       |
| 57                    | Tristetraprolin                                   | TTP_RAT                     | 34260        | 10         | 51                  | 6        |
| 58                    | T-box transcription factor TBX1                   | gi 157823231                | 51913        | 9.5        | 69                  | 9        |
| 59                    | splicing factor, arginine/serine-rich 5           | gi 149025039                | 12748        | 11         | 87                  | 3        |
| 60                    | Queuine tRNA-ribosyltransferase                   | TGT_RAT                     | 44842        | 8.9        | 61                  | 93       |
| 61                    | Centromere protein N                              | CENPN_RAT                   | 39776        | 9          | 55                  | 24       |
| 62                    | Cryptochrome-1                                    | CRY1_RAT                    | 66930        | 9.3        | 53                  | 11       |
| 63                    | mRNA export factor                                | RAE1L_RAT                   | 41463        | 9.1        | 94                  | 14       |
| 64                    | Heterogeneous nuclear ribonucleoproteins A2/B1    | 1 ROA2_RAT                  | 37512        | 9.3        | 72                  | 7        |
| 65                    | Replication initiator 1                           | REPI1_RAT                   | 63907        | 12         | 79                  | 21       |
| 66                    | Serine/arginine-rich splicing factor 3            | SRSF3_BOVIN                 | 19546        | 12         | 98                  | 11       |
| 67                    | Ubiquitin-60S ribosomal protein L40               | RL40_RAT                    | 15004        | 11         | 75                  | 7        |
|                       | Fibronectin type 3 and ankyrin repeat domains 1   |                             |              |            |                     |          |
| 68                    | protein                                           | FANK1_RAT                   | 38615        | 8.7        | 85                  | 31       |
| 69                    | Probable DNA primase small subunit                | PRI1_HUMAN                  | 38152        | 9.5        | 79                  | 10       |
| 70                    | Synaptonemal complex protein 3                    | SYCP3 RAT                   | 29828        | 9.5        | 61                  | 17       |
|                       | TGF-beta-activated kinase 1 and MAP3K7-           | —                           |              |            |                     |          |
| 71                    | binding protein 2                                 | TAB2 RAT                    | 76794        | 9.6        | 51                  | 11       |
| 72                    | Prokineticin-2                                    | PROK2 RAT                   | 12213        | 12         | 50                  | 12       |
| 73                    | LIM domain-containing protein 2                   | LIMD2 RAT                   | 14626        | 10         | 78                  | 14       |
| 74                    | Centromere protein W                              | CENPW RAT                   | 10082        | 12         | 56                  | 15       |
| 75                    | Splicing factor, proline- and glutamine-rich      | SFPQ MOUSE                  | 75508        | 9.9        | 78                  | 29       |
| 76                    | 60S ribosomal protein L36                         | RL36 RAT                    | 12317        | 12         | 52                  | 14       |
| 77                    | splicing factor, arginine/serine-rich 1 (ASF/SF2) | ail148669916                | 18717        | 12         | 63                  | 12       |
|                       | similar to vippee-like 3 (predicted) isoform      | 51                          |              |            |                     |          |
| 78                    | CRA e                                             | D4A0Y3 RAT                  | 8666         | 12         | 51                  | 23       |
| 79                    | splicing factor arginine/serine-rich 7            | ail119620768                | 15981        | 11         | 62                  | 87       |
| 80                    | similar to ankyrin repeat domain 29               | ail149031746                | 13018        | 9.9        | 61                  | 95       |
| 81                    | Mitogen-activated protein kinase 9                | MK09 RAT                    | 48499        | 5.5        | 52                  | 81       |
| 82                    | PREDICTED: centrosomal protein 27 isoform 3       | ail293355322                | 25128        | 5.5        | 56                  | 14       |
| 83                    | Steroid receptor RNA activator 1                  | SRA1 RAT                    | 25533        | 5.6        | 58                  | 23       |
| 84                    | mortality factor 4 like 2 isoform CRA d           | MO4L2 RAT                   | 2935         | 9.0<br>9.9 | 59                  | 12       |
| 85                    | E3 ubiquitin-protein ligase parkin                | PRKN2 RAT                   | 53613        | 6.5        | 96                  | 38       |
| 00                    | 1 2-dihydroxy-3-keto-5-methylthiopentene          |                             | 00010        | 0.0        | 00                  | 00       |
| 86                    | dioxygenase                                       | MTND RAT                    | 21505        | 51         | 57                  | 87       |
|                       | PPP30 pre-mPNA processing factor 30               |                             | 21000        | 0.1        | 57                  | 07       |
| 87                    | homolog                                           | D37UB5 PAT                  | 35104        | 5          | 110                 | 30       |
|                       | Transforming growth faster bate 1 induced         | D320D3_IAI                  | 55104        | 5          | 110                 | 50       |
| 88                    | transforming growth factor beta-1-induced         |                             | <b>E1696</b> | C F        | 70                  | 0        |
| 80                    | DEDICTED: Nedd4 binding protein 1 like            |                             | 31000        | 10         | 70                  | 0        |
| 89<br>00              |                                                   |                             | 24507        | 10         | 57                  | 13       |
| 90                    |                                                   |                             | 16059        | 4 0        | 55                  | 10       |
| 91                    | Complexin-2                                       | CPLXZ_RAT                   | 15499        | 4.9        | 59                  | 25       |
| 92                    | Homeobox protein Hox-A7                           | HXA/_RAT                    | 12601        | 4.7        | 80                  | 14       |
| 93                    | S-phase kinase-associated protein 1               | SKP1_RAT                    | 18831        | 4.2        | 51                  | 12       |
| 94                    | Heat shock protein beta-8                         | HSPB8_RAT                   | 21750        | 4.8        | 70                  | 12       |
| 95                    | Calreticulin                                      | CALR_RAT                    | 48137        | 4.2        | 91                  | 16       |
| 96                    | Protamine-3                                       | PRM3_RAT                    | 11557        | 4.1        | 66                  | 27       |
| 97                    | SOSS complex subunit B1                           | SOSB1_RAT                   | 22534        | 9.9        | 62                  | 16       |
| 98                    | Galectin-7                                        | LEG7_RAT                    | 15333        | 6.5        | 61                  | 10       |
| 99                    | XPA binding protein 2, isoform CRA_a              | OCYF8_MOUSE                 | 42530        | 4.7        | 51                  | 30       |
| 100                   | D(1A) dopamine receptor                           | DRD1_RAT                    | 50308        | 6.5        | 61                  | 16       |
| 101                   | Phosphatidylinositol-5-phosphate 4-kinase type-   |                             |              |            |                     |          |
| 101                   | 2 alpha                                           | PI42A_RAT                   | 46409        | 6.5        | 101                 | 12       |
| 102                   | Abl interactor 1                                  | ABI1_RAT                    | 51787        | 6.6        | 67                  | 24       |

|          |                                                |                 |           |     | Mascot              | MS        |
|----------|------------------------------------------------|-----------------|-----------|-----|---------------------|-----------|
| Spot ID" | Protein Name                                   | Accession no. 7 | vivv(kDa) | рі  | score <sup>c)</sup> | Coverage  |
| 103      | Nuclear pore complex protein Nup54             | NUP54_RAT       | 55825     | 6.6 | 69                  | 13        |
| 104      | Histone-binding protein RBBP7                  | RBBP7_RAT       | 48132     | 4.8 | 51                  | 6         |
| 105      | Small muscular protein                         | SMPX_RAT        | 9115      | 11  | 68                  | 21        |
| 106      | Normal mucosa of esophagus-specific gene 1     |                 |           |     |                     |           |
|          | protein                                        | NMES1_RAT       | 9592      | 11  | 66                  | 13        |
| 107      | Histone promoter control protein 2             | HPC2_SCHPO      | 36664     | 6.4 | 76                  | 32        |
| 108      | DNA-directed RNA polymerases I, II, and III    |                 |           |     |                     |           |
| 100      | subunit RPABC1                                 | RPAB1_RAT       | 24669     | 5.6 | 69                  | 15        |
| 109      | Prohibitin                                     | PHB_RAT         | 29859     | 5.5 | 50                  | 12        |
| 110      | Nup37 protein                                  | gi 171846615    | 33606     | 5.7 | 69                  | 15        |
| 111      | GIP-binding nuclear protein Ran                | RAN_RAT         | 24579     | 7.8 | 71                  | 21        |
| 114      | dual specificity protein phosphatase 15        | gij157820053    | 15130     | 12  | 99                  | 32        |
| 115      | BE 11-like protein                             | BET1L_RAT       | 12466     | 9.7 | 59                  | /         |
| 116      | ribosomal RNA-processing protein / homolog A   | gi 194474082    | 32492     | 10  | 52                  | 82        |
| 117      | Fatty acid-binding protein, adipocyte          | FABP4_RAT       | 14813     | 9   | 87                  | 19        |
| 118      | Zing finger protein SNAI2                      | PREB_RAT        | 45899     | 9.8 | 67                  | 8         |
| 119      | Zinc inger protein SNAIZ                       | SINAIZ_RAT      | 30772     | 10  | 74                  | 17        |
| 120      | Ribosomal Rina-processing protein 8            |                 | 36591     | 10  | 64                  | 18        |
| 121      | oncharacterized protein C ron rus homolog      |                 | 150911    | 10  | 64<br>59            | 24        |
| 122      |                                                | Q4JFWI_KAI      | 150611    | 10  | 50                  | 24        |
| 123      | Small nuclear ribonucleoprotein-associated     |                 | 01751     | 10  | 50                  | 46        |
| 104      | protein B                                      |                 | 21/01     | 12  | 59                  | <b>40</b> |
| 124      | Lomosboy protoin Hoy D2                        | UDP2_RAT        | 12207     | 10  | 50                  | 12<br>5   |
| 120      | Pro mPNA splicing factor SVE2                  |                 | 10207     | 0.2 | 59<br>67            | 5         |
| 120      | Transcription termination factor               | MTEDE DAT       | 13366     | 9.2 | 65                  | 6         |
| 127      |                                                |                 | 26157     | 11  | 11                  | 7         |
| 120      | Homeobox protein Hox C4                        | HYCA DAT        | 20157     | 11  | 70                  | 28        |
| 129      | histone H1                                     |                 | 1114      | 0.7 | 51                  | 20        |
| 131      | Insulin gene enhancer protein ISI -1           |                 | 30023     | 9.7 | 88                  | 13        |
| 132      | natatin                                        |                 | 2126      | a a | 58                  | 6         |
| 132      | Protein mago nashi homolog                     | MGN RAT         | 17210     | 5.7 | 61                  | 10        |
| 134      | Spindle and kinetochore-associated protein 2   | SKA2 RAT        | 16678     | 5.6 | 56                  | 88        |
| 135      | Transcription factor A                         | TFAM RAT        | 28397     | 10  | 51                  | 11        |
| 136      | synaptonemal complex protein 1                 | SYCP1 RAT       | 3969      | 10  | 177                 | 16        |
| 137      | ADP-ribosvlation factor-like protein 4A        | ARI 4A RAT      | 22745     | 10  | 59                  | 22        |
| 101      | PREDICTED: similar to Tripartite motif protein |                 |           |     |                     |           |
| 138      | 30-like                                        | TR30A MOUSE     | 21361     | 6.4 | 89                  | 12        |
| 139      | core-binding factor subunit beta               | ail61557239     | 21732     | 6.4 | 109                 | 15        |
| 140      | Guanine nucleotide exchange factor MSS4        | MSS4 RAT        | 14261     | 5   | 72                  | 13        |
| 140      | cyclin C, isoform CRA c                        | CCNC RAT        | 23229     | 6.4 | 76                  | 16        |
| 141      | Protein S100-A4                                | S10A4_RAT       | 11997     | 4.9 | 124                 | 15        |
| 142      | Oncomodulin                                    | ONCO_RAT        | 12238     | 3.9 | 80                  | 19        |
| 143      | Myosin regulatory light chain 12B              | ML12B_RAT       | 19883     | 4.6 | 52                  | 36        |
| 144      | 60S acidic ribosomal protein P2                | RLA2_RAT        | 11685     | 4.2 | 64                  | 22        |
| 145      | cAMP-dependent protein kinase inhibitor alpha  | IPKA_RAT        | 7956      | 4.3 | 52                  | 41        |
| 146      | DNA-directed RNA polymerase II subunit RPB7    | RPB7_RAT        | 19453     | 5.2 | 59                  | 10        |
| 147      | General transcription factor IIH subunit 2     | TF2H2_RAT       | 45758     | 6.6 | 81                  | 8         |
| 148      | Prelamin-A/C                                   | LMNA_RAT        | 74564     | 6.6 | 84                  | 19        |
| 149      | breast carcinoma amplified sequence 2          | B5DFM8_RAT      | 24131     | 5   | 91                  | 19        |
| 150      | Keratin, type II cytoskeletal 8                | K2C8_RAT        | 53985     | 5.7 | 93                  | 21        |
| 151      | Protein S100-A5                                | S10A5_RAT       | 10862     | 5   | 71                  | 16        |
| 152      | Small ubiquitin-related modifier 2             | SUMO2_RAT       | 10921     | 5.2 | 62                  | 13        |
| 153      | Barrier-to-autointegration factor              | BAF_RAT         | 10266     | 5.7 | 60                  | 57        |
| 154      | Ester hydrolase C11orf54 homolog               | CK054_RAT       | 35427     | 6.2 | 64                  | 26        |
| 155      | Secretoglobin family 2A member 1               | SG2A1_RAT       | 10900     | 6.3 | 52                  | 28        |
| 156      | Barrier-to-autointegration factor-like protein | BAFL_MOUSE      | 10659     | 5.2 | 53                  | 12        |
| 157      | Prothymosin alpha                              | PTMA_RAT        | 12375     | 3.6 | 72                  | 18        |
| 158      | Acidic leucine-rich nuclear phosphoprotein 32  |                 |           |     |                     |           |
| 100      | family member                                  | AN32A_RAT       | 28718     | 3.8 | 55                  | 26        |
| 159      | RNA polymerase beta subunit                    | gi 2258104      | 1404      | 3.9 | 69                  | 17        |

#### Table 1 – Proteins Identificated in hepatocyte nucleus of Rat (Continued)

|                       |                                                  | b)                          | ,       | _   | Mascot              | MS       |
|-----------------------|--------------------------------------------------|-----------------------------|---------|-----|---------------------|----------|
| Spot ID <sup>a)</sup> | Protein Name                                     | Accession no. <sup>by</sup> | MW(kDa) | рІ  | score <sup>c)</sup> | Coverage |
| 160                   | Protein S100-A3                                  | S10A3_RAT                   | 12253   | 4.6 | 52                  | 19       |
| 161                   | THO complex subunit 3                            | gi 157823413                | 39455   | 5.7 | 96                  | 15       |
| 162                   | Histone H4                                       | H4_RAT                      | 11360   | 12  | 56                  | 33       |
| 163                   | Ubiquitin-fold modifier 1                        | UFM1_RAT                    | 9169    | 10  | 53                  | 25       |
| 164                   | Thioredoxin                                      | THIO_RAT                    | 12008   | 4.6 | 110                 | 39       |
| 165                   | beta-A3 crystallin                               | gi 2338452                  | 6053    | 4.9 | 54                  | 15       |
| 166                   | rCG34610, isoform CRA_a                          | D4A9L2_RAT                  | 24679   | 11  | 58                  | 34       |
| 167                   | FUS interacting protein (serine-arginine rich) 1 | Q4KM38_RAT                  | 20016   | 11  | 59                  | 6        |
| 168                   | Homeobox protein Hox-C5                          | HXC5_XENLA                  | 11108   | 11  | 67                  | 30       |
| 160                   | Calcium/calmodulin-dependent protein kinase II   |                             |         |     |                     |          |
| 103                   | inhibitor 2                                      | CK2N2_XENLA                 | 8711    | 5.7 | 60                  | 12       |
| 170                   | sestrin-3                                        | gi 157822219                | 57292   | 5.8 | 134                 | 12       |
| 171                   | 26S protease regulatory subunit 4                | PRS4_RAT                    | 49325   | 5.8 | 65                  | 13       |
| 172                   | UPF0729 protein C18orf32 homolog                 | CR032_RAT                   | 8334    | 10  | 77                  | 15       |
| 173                   | Ubiquitin fusion degradation protein 1 homolog   | UFD1_RAT                    | 34748   | 6.3 | 72                  | 17       |
| 173                   | Homeobox protein Hox-B8 (Fragment)               | HXB8_RAT                    | 11408   | 11  | 60                  | 23       |
| 174                   | dihydrofolate reductase (DHFR)                   | DYR_RAT                     | 1550    | 7   | 56                  | 7        |
| 175                   | Enhancer of yellow 2 transcription factor        | ENY2_DROMO                  | 10798   | 6.8 | 64                  | 21       |
| 176                   | elongation factor 1 alpha                        | gi 13359291                 | 1891    | 7   | 74                  | 8        |
| 177                   | p27kip1                                          | gi 4587316                  | 962     | 11  | 97                  | 33       |
| 178                   | similar to RIKEN cDNA 1110031B06                 | gi 149052798                | 962     | 6.9 | 55                  | 23       |
| 179                   | 40S ribosomal protein S27                        | RS27_RAT                    | 9797    | 11  | 57                  | 12       |
| 180                   | probasin                                         | PBAS_RAT                    | 3059    | 11  | 54                  | 13       |
| 181                   | CDKN2                                            | gi 1483509                  | 1992    | 3   | 89                  | 17       |
| 182                   | mouse double minute 2 protein                    | MDM2_MOUSE                  | 2311    | 3.2 | 73                  | 21       |
| 183                   | Kruppel-like factor 3                            | gi 57833895                 | 2033    | 3.7 | 83                  | 38       |
| 184                   | Serine/threonine-protein phosphatase PP1-beta    |                             |         |     |                     |          |
| 104                   | catalytic subunit                                | PP1B_RAT                    | 37961   | 5.8 | 73                  | 9        |
| 185                   | Serpin B10                                       | SPB10_RAT                   | 45415   | 6.1 | 58                  | 19       |
| 186                   | histidine triad nucleotide binding protein W     | APTX_RAT                    | 2448    | 4.7 | 65                  | 26       |
| 187                   | Pre-mRNA-processing factor 19                    | PRP19_RAT                   | 55661   | 6.1 | 63                  | 11       |
| 188                   | Anaphase-promoting complex subunit CDC26         | CDC26_RAT                   | 9796    | 7.2 | 54                  | 13       |
| 189                   | Spermatid nuclear transition protein 1           | STP1_RAT                    | 6392    | 13  | 89                  | 10       |
| 190                   | Arrestin-D (Fragment)                            | ARRD_RAT                    | 7921    | 7.9 | 65                  | 82       |
| 191                   | PEST proteolytic signal-containing nuclear       |                             |         |     |                     |          |
| 101                   | protein                                          | PCNP_PONAB                  | 18955   | 7.7 | 86                  | 8        |
| 192                   | histone H1.a, hepatic                            | gi 2118968                  | 5377    | 12  | 69                  | 5        |
| 193                   | 40S ribosomal protein S28                        | RS28_RAT                    | 7893    | 12  | 57                  | 26       |
| 194                   | oligodendrocyte transcription factor 2           | gi 90959767                 | 2894    | 9.9 | 55                  | 12       |
| 195                   | SNRPN upstream reading frame protein             | SNURF_RAT                   | 8487    | 12  | 79                  | 8        |
| 196                   | Enhancer of mRNA-decapping protein 1             | EDC1_YEAST                  | 19283   | 12  | 85                  | 17       |
| 197                   | Histone H2B type 1                               | H2B1_RAT                    | 13982   | 11  | 67                  | 9        |
| 198                   | serine/arginine-rich splicing factor 1 isoform 1 | gi 5902076                  | 27842   | 11  | 65                  | 6        |
| 199                   | Serine/arginine-rich splicing factor 7           | SRSF7_BOVIN                 | 27153   | 13  | 68                  | 13       |
| 200                   | Serine/arginine-rich splicing factor 2           | SRSF2_RAT                   | 25461   | 12  | 144                 | 18       |
| 201                   | A/G-specific adenine DNA glycosylase             | MUTYH_RAT                   | 58567   | 11  | 50                  | 15       |
| 202                   | Heterochromatin protein 1-binding protein 3      | HP1B3_RAT                   | 61054   | 10  | 69                  | 6        |
| 203                   | probable rRNA-processing protein EBP2            | gi 56790289                 | 34837   | 11  | 76                  | 14       |
| 204                   | Ubiquitin-conjugating enzyme E2 S                | UBE2S_RAT                   | 24371   | 9.3 | 61                  | 17       |

#### Table 1 – Proteins Identificated in hepatocyte nucleus of Rat (Continued)

a) Spot ID is the unique number from fig3.

b) Accession no. is the MASCOT result of MALDI-TOF/TOF searched from the Uniprot or NCBI database.

c) A score more than 53 is recognized to be significant (p<0.05).

#### 4. Discussion

As the largest, highly structured and most important organelles of eukaryotic cells, Nuclei contain the genetic information that defines the appearance and behavior of an organism. DNA replication, RNA transcription and transcription products processing all are performed in the nucleus (Dundr and Misteli, 2001). So, nucleus is considered to be the control center of the genetic and metabolic in the cell. Therefore, the study of nuclear protein helps to further understand the structure and function of the nucleus. This article combined the subcellular grade and proteomics technology to present for the first time an experimentally determined core nuclear proteome for rat hepatocyte. Our analysis of the nucleus proteome from hepatocyte led to identification of more than 200 proteins reflects the structural and functional complexity of liver nucleus. Besides a large number of proteins implicated in known nuclear processes, lots of detected proteins carry no functional annotation. Further, extensive bioinformatics approaches using Ingenuity Pathway Analysis revealed the function categories of these nucleoproteins. Importantly, our analysis identified these nucleoproteins implicated in lots of signal transduction pathways, and sheds important new light on nuclear compartments and functions.

Our study provides comprehensive new insight into the biology of the rat hepatocyte nucleus and will serve as an important platform for revealing the expression varies of nucleus protein under certain physiological or pathological conditions. Moreover, it will provide an important resource for searching the valuable marker of diseases diagnosis and therapeutic. And will be of great benefit to future studies that can lead to a better understanding of the process and molecular mechanism of liver disease.

## Acknowledgements:

This work was supported by the National Basic Research 973 Pre-research Program of China (No. 2012CB722304), National Nature Science Foundation of China (NO. 31201093) and Foundation of science and technology research projects of Henan Province in China (No.102300413213).

#### **Corresponding Author:**

Dr. Cunshuan Xu, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China, E-mail: <u>cellkeylab@163.com</u>

#### References

- 1. Aggarwal K, Lee KH. Functional genomics and proteomics as a foundation for systems biology. Brief Funct Genomic Proteomic. 2003, 2(3):175-184.
- Cheng GF, Lin JJ, Feng XG, Fu ZQ, Jin YM, Yuan CX, Zhou YC, Cai YM. Proteomic analysis of differentially expressed proteins between the male and female worm of Schistosoma japonicum after pairing. Proteomics. 2005, 5(2):511-521.
- 3. Duclos S, Desjardins M. Organelle proteomics. Methods Mol Biol. 2011; 753:117-128.
- 4. Dundr M, Misteli T. Functional architecture in the cell nucleus. Biochem J. 2001, 356:297-310.
- Fernando H, Wiktorowicz JE, Soman KV, Kaphalia BS, Khan MF, Shakeel Ansari GA. Liver proteomics in progressive alcoholic steatosis. Toxicol Appl Pharmacol. 2013, 266(3):470-480.
- Huo R, He Y, Zhao C, Guo XJ, Lin M, Sha JH. Identification of human spermatogenesis-related proteins by comparative proteomic analysis: a preliminary study. Fertil Steril. 2008, 90 (4):1109–1118.
- Jung E, Hoogland C, Chiappe D, Sanchez JC, Hochstrasser DF.. The establishment of a human liver nuclei two-dimensional electrophoresis reference map. Electrophoresis. 2000, 21(16):3483-3487.

- 8. Lamond AI, Earnshaw WC. Structure and function in the nucleus. Science. 1998, 280:547-553.
- 9. Lewis JD, Tollervey D. Like attracts like: getting RNA processing together in the nucleus. Science. 2000, 288:1385-1389.
- Matunis MJ. Isolation and fractionation of rat liver nuclear envelopes and nuclear pore complexes. Methods. 2006, 39(4):277-283.
- Misteli T, Spector DL. The cellular organization of gene expression. Curr Opin Cell Biol. 1998, 10:323-331.
- Mulvey CM, Tudzarova S, Crawford M, Williams GH, Stoeber K, Godovac-Zimmermann J. Subcellular proteomics reveals a role for nucleo-cytoplasmic trafficking at the DNA Replication Origin Activation Checkpoint. J Proteome Res. 2013, DOI: 10.1021/pr3010919.
- 13. Pandey A, Mann M. Proteomics to study genes and genomes. Nature. 2000, 405(6788):837-846.
- 14. Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat Genet. 2003, 33:311-3234.
- Paulo JA, Gaun A, Kadiyala V, Ghoulidi A, Banks PA., Conwell DL, Steen H. Subcellular Fractionation Enhances Proteome Coverage of Pancreatic Duct Cells. BBA-Proteins Proteom. 2013, DOI: 10.1016/j.bbapap.2013.01.011.
- Phair RD, Misteli T. High mobility of proteins in the mammalian cell nucleus. Nature. 2000, 404(6778):604-609.
- Qazi AS, Sun M, Huang Y, Wei Y, Tang J. Subcellular proteomics: Determination of specific location and expression levels of lymphatic metastasis associated proteins in hepatocellular carcinoma by subcellular fractionation. Biomed Pharmacother. 2011, 65(6):407-416.
- Schmid MB. Structural proteomics: the potential of high-throughput structure determination. Trends Microbiol. 2002, 10(10supp1):S27-S31.
- Shakib K, Norman JT, Fine LG, Brown LR, Godovac-Zimmermann J. Proteomics profiling of nuclear proteins for kidney fibroblasts suggests hypoxia, meiosis, and cancer may meet in the nucleus. Proteomics. 2005, 5(11):2819-2838.
- 20. Tung CL, Lin ST, Chou HC, Chen YW, Lin HC, Tung CL, Huang KJ, Chen YJ, Lee YR, Chan HL. Proteomics-based identification of plasma biomarkers in oral squamous cell carcinoma. J Pharm Biomed Anal. 2013, 75:7-17.
- 21. Vondran FW, Katenz E, Schwartlander R, Morgul MH, Raschzok N, Gong X, Cheng X, Kehr D, Sauer IM. Isolation of primary human hepatocytes after partial hepatectomy: criteria for identification of the most promising liver specimen. Artif Organs. 2008, 32(3):205-213.
- 3/3/2013