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Abstract: Power System Stabilizers (PSS) are used to generate supplementary damping control signals for the 
excitation system in order to damp the Low Frequency Oscillations (LFO) of the electric power system. The PSS is 
usually designed based on classical control approaches but this Conventional PSS (CPSS) has some problems. In 
order to overcome the drawbacks of CPSS, numerous techniques have been proposed in literatures. In this paper a 
new Fuzzy type PSS is considered for damping electric power system oscillations. In this Fuzzy approach, the upper 
and lower bounds of the Fuzzy membership functions are obtained using Genetic Algorithms (GA) optimization 
method. The proposed Fuzzy-Genetics PSS (FGPSS) is evaluated on a multi machine power system. The simulation 
results clearly indicate the effectiveness and validity of the proposed method.  
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1. Introduction 

Large electric power systems are complex 
nonlinear systems and often exhibit low frequency 
electromechanical oscillations due to insufficient 
damping caused by adverse operating. These 
oscillations with small magnitude and low frequency 
often persist for long periods of time and in some 
cases they even present limitations on power transfer 
capability. In analyzing and controlling the power 
system’s stability, two distinct types of system 
oscillations are recognized. One is associated with 
generators at a generating station swinging with 
respect to the rest of the power system. Such 
oscillations are referred to as “intra-area mode” 
oscillations. The second type is associated with 
swinging of many machines in an area of the system 
against machines in other areas. This is referred to as 
“inter-area mode” oscillations. Power System 
Stabilizers (PSS) are used to generate supplementary 
control signals for the excitation system in order to 
damp both types of oscillations. The widely used 
Conventional Power System Stabilizers (CPSS) are 
designed using the theory of phase compensation in 
the frequency domain and are introduced as a lead-
lag compensator. The parameters of CPSS are 
determined based on the linearized model of the 
electric power system. Providing good damping over 
a wide operating range, the CPSS parameters should 
be fine tuned in response to both types of oscillations. 
Since power systems are highly nonlinear systems, 
with configurations and parameters which alter 
through time, the CPSS design based on the 

linearized model of the power system cannot 
guarantee its performance in a practical operating 
environment. Therefore, an adaptive PSS which 
considers the nonlinear nature of the plant and adapts 
to the changes in the environment is required for the 
power system. In order to improve the performance 
of CPSSs, numerous techniques have been proposed 
for designing them, such as intelligent optimization 
methods [1-4] and Fuzzy logic method [5-9]. Also 
many other different techniques such as robust 
control methods have been reported in [10-14]. 

This paper deals with a design method for the 
stability enhancement of a multi machine power 
system using a new Fuzzy type PSS whose 
membership functions boundaries are tuned by 
genetic algorithms. 
2. System under study 

In this paper IEEE 14 bus test system is 
considered to evaluate the proposed method. The 
system data can be found in [15]. Figure 1 shows the 
proposed test system. 
2.1. Dynamic model of the system  

The nonlinear dynamic model of the system is 
given as follows: 
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where i=1, 2, 3, 4,5 (the generators: 1 to 4); δ, rotor 
angle; ω, rotor speed; Pm, mechanical input power; 
Pe, electrical output power; E´

q, internal voltage 
behind x´

d; Efd, equivalent excitation voltage; Te, 
electric torque; T´

do, time constant of excitation 
circuit; Ka, regulator gain; Ta, regulator time constant; 
Vref, reference voltage; Vt, terminal voltage. 

 
Figure 1: IEEE 14 bus test system 

 
3. Power System Stabilizer 

As mentioned before, in large 
interconnected power systems, the damping torque of 
system is reduced and system need to PSS for 
stability. The basic function of PSS is to add damping 
torque to the generator rotor oscillations by 
controlling its excitation using auxiliary stabilizing 
signal. To provide damping, the stabilizer must 
produce a component of electrical torque in phase 
with the rotor speed deviations. The PSS 
configuration is given in as (2). where, ∆ω is the 
speed deviation in p.u. This type of PSS consists of a 
washout filter, a dynamic compensator. The output 
signal is fed as a supplementary input signal to the 
excitation of generator. The washout filter, which is a 
high pass filter, is used to reset the steady state offset 
in the PSS output. In this paper the value of the time 
constant (Tw) is fixed to 10 s. The dynamic 
compensator is made up to two lead–lag stages with 
time constants, T1–T4 and an additional gain KDC 

[16].  
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4. Design methodology 
As mentioned before, in this paper a new 

Fuzzy type PSS in considered for damping power 
system oscillations. Fuzzy method has three major 
sections as membership functions, rule bases and 
defuzzification. In classical Fuzzy methods, the 
boundaries of membership functions are adjusted 
based on expert person experiences that may be with 

trial and error and does not guarantee performance of 
the system. For solve this problem, in this paper the 
boundaries of the membership functions are tuned by 
an optimal search for achieving the best boundaries. 
Therefore the boundaries of input and output 
membership functions are considered as uncertain 
and then the optimal boundaries are obtained by 
genetic algorithms [17]. Here the proposed Fuzzy 
controller block diagram is given in Figure 2. In fact, 
it is a nonlinear PI-type Fuzzy logic controller with 
two inputs and one output. In this paper ΔVref is 
modulated in order to output of PSS and the speed 
deviation  and its rate d()/dt are considered as 
the inputs to the PSS. The inputs are filtered by 
washout block to eliminate the DC components. Also 
there are three parameters denoted by Kin1, Kin2 and 
Kout which are defined over an uncertain range and 
then obtained by genetic algorithms optimization 
method. Therefore the boundaries of inputs and 
output signals are tuned on an optimal value.  

Though the Fuzzy controller accepts these 
inputs, it has to convert them into fuzzified inputs 
before the rules can be evaluated. To accomplish this, 
one of the most important and critical blocks in the 
whole Fuzzy controllers should be built and it is The 
Knowledge Base. It consists of two more blocks 
namely the Data Base and the Rule Base [17]. 

 
Figure 2: Fuzzy PSS 

 
4.1. Data base 

Data base consists of the membership 
function for input variables Δω and d(Δω)/dt and 
output variable described by linguistic variables 
shown in Tables 1-3 [17]. 
 

Table 1: The linguistic variables for Δω 
Big Positive  
(BP) 

Medium Positive 
(MP) 

Small Positive  
(SP)  

Big Negative  
(BN)  

Medium Negative 
(MN) 

Small Negative 
(SN) 

Zero (ZE)   

 
Table 2: The linguistic variables for d()/dt 

Positive (P) Negative Zero (ZE) 

 
Table 3: The linguistic variables for output 

 Big Positive  
(BP) 

Medium Positive 
(MP) 

Small Positive  
(SP)  

Big Negative  
(BN)  

Medium Negative 
(MN) 

Small Negative 
(SN) 

Zero  
(ZE) 

Very Big Positive 
(VBP) 

Very Big Negative 
(VBN)  
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The “triangular membership functions” are 
used as membership functions for the input and 
output variables. The Figures 3-5 illustrate these in 
detail indicating the range of all the variables. These 
ranges are defined as default and then tuned via 
cascade K parameters (Kin1, Kin2 and Kout) and 
adjusted on the optimal values.  

 
Figure 3: Membership function of input 1 () 

 
Figure 4: Membership function of input 2 (d()/dt) 

 
Figure 5: Membership function of output 

 
4.2. Rule base  

The other half of the knowledge base is the 
Rule Base which consists of all the rules formulated 
by the experts. It also consists of weights which 
indicate the relative importance of the rules among 
themselves and indicates the influence of a particular 
rule over the net fuzzified output. The Fuzzy rules 
which are used in this scheme are shown in Table 4.  
 

Table 4: Fuzzy Rule Bases 
  Δω 
 
d(Δω)/dt 

BN MN SN  ZE SP MP BP 

N VBN BN MN SN ZE MP BP 
ZE BN MN SN ZE SP MP BP 
P BN MN ZE SP MP BP VBP 

 
The next section specifies the method 

adopted by the Inference Engine especially the way it 
uses the Knowledge Base consisting of the described 
Data Base and Rules Base. 
 

4. 3. Methodologies adopted in fuzzy inference 
engine  

Though many methodologies have been 
mentioned in evaluating the various expressions like 
Fuzzy union (OR operation), Fuzzy intersection 
(AND operation) and etc with varying degree of 
complexity. Here in Fuzzy scheme the most widely 
used methods for evaluating such expressions are 
used. The function used for evaluating OR is 
“MAX”, which is the maximum of the two operands 
and similarly the AND is evaluated using “MIN” 
function which is defined as the minimum of the two 
operands. It should be note that in the present 
research paper, the equal importance is assigned to all 
the rules in the Rules Base and all the weights are 
equal [17].  
 
4.4. Defuzzification method 

The Defuzzification method followed in this 
study is the “Center of Area Method” or “Gravity 
method”. This method is discussed in [17]. As 
mentioned before, in this paper the boundaries of the 
membership functions are adjusted by genetic 
algorithms. In the next section a brief introduction 
about genetic algorithms is presented.  
 
4.5. Genetic Algorithms  
 Genetic Algorithms (GA) are global search 
techniques, based on the operations observed in 
natural selection and genetics. They operate on a 
population of current approximations-the individuals-
initially drawn at random, from which improvement 
is sought. Individuals are encoded as strings 
(Chromosomes) constructed over some particular 
alphabet, e.g., the binary alphabet {0.1}, so that 
chromosomes values are uniquely mapped onto the 
decision variable domain. Once the decision variable 
domain representation of the current population is 
calculated, individual performance is assumed 
according to the objective function which 
characterizes the problem to be solved. It is also 
possible to use the variable parameters directly to 
represent the chromosomes in the GA solution. At the 
reproduction stage, a fitness value is derived from the 
raw individual performance measure given by the 
objective function and used to bias the selection 
process. Highly fit individuals will have increasing 
opportunities to pass on genetically important 
material to successive generations. In this way, the 
genetic algorithms search from many points in the 
search space at once and yet continually narrow the 
focus of the search to the areas of the observed best 
performance. The selected individuals are then 
modified through the application of genetic operators. 
In order to obtain the next generation Genetic 
operators manipulate the characters (genes) that 
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constitute the chromosomes directly, following the 
assumption that certain genes code, on average, for 
fitter individuals than other genes. Genetic operators 
can be divided into three main categories: 
Reproduction, crossover and mutation [18]. 
 Reproduction: selects the fittest individuals in 

the current population to be used in generating 
the next population. 

 Cross-over: Causes pairs, or larger groups of 
individuals to exchange genetic information with 
one another 

 Mutation: causes individual genetic 
representations to be changed according to some 
probabilistic rule.  

5. Fuzzy controller tuning using Genetic 
Algorithms 

In this section the membership functions of 
the proposed FGPSS are tuned by K parameters (Kin1, 
Kin2 and Kout). Only one PSS is installed on generator 
1. These K parameters are obtained based on genetic 
algorithms optimization method. The parameter ΔEref 
is modulated to output of FGPSS and speed deviation 
 and its rate are considered as input to FGPSS. 
The optimum values of Kin1, Kin2 and Kout which 
minimize an array of different performance indexes 
are accurately computed using genetic algorithms. In 
this study the performance index is considered as (3). 
In fact, the performance index is the Integral of the 
Time multiplied Absolute value of the Error (ITAE).  

dtΔωtITAE
t

0
 (3) 

 To compute the optimum parameter values, a 
three phase short circuit in bus 3 is assumed and the 
performance index is minimized using genetic 
algorithms. The optimum values of the parameters 
Kin1, Kin2 and Kout are obtained using genetic 
algorithms and summarized in the Table 5.  

Table 5: Obtained parameters using GA  
Parameters Kin1 Kin2 Kout 

Obtained Value 55.3 24.7 0.39 

6. Simulation results 
Simulations are carried out on the test 

system. To evaluate the system performance under 
disturbances, a 6-cycle three-phase short circuit in 
bus 4 is considered as fault. 

The simulation results are presented in 
Figures 6-10. The simulation results show that 
applying PSS signal greatly enhances the damping of 
the generator angle oscillations. The results clearly 
show that in large electric power systems, PSS can 
successfully increase damping of power system 
oscillations. Also the responses without PSS clearly 
show that the system without PSS does not have 
enough damping torque and the responses go to 
fluctuate.  
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Figure 6: Speed G1 (Solid (GA-PSS), Dashed 

(without PSS)) 
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Figure 7: Speed G2 (Solid (GA-PSS), Dashed 

(without PSS)) 
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Figure 8: Speed G3 (Solid (GA-PSS), Dashed 

(without PSS)) 
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Figure 9: Speed G4 (Solid (GA-PSS), Dashed 

(without PSS)) 
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Figure 10: Speed G5 (Solid (GA-PSS), Dashed 

(without PSS)) 

 
9. Conclusions 

In this paper a new Fuzzy PSS based on 
genetic algorithms optimization method has been 
successfully proposed. The final designed FGPSS has 
characteristics of the both optimal and nonlinear 
controllers. The proposed method was applied to a 
typical power system. The simulation results 
demonstrated that the designed optimal FGPSS is 
capable of guaranteeing the robust stability and 
robust performance of the power system under a wide 
range of system uncertainties. These results and the 
suitability of Fuzzy logic to nonlinear problems, open 
the door to study the effect of nonlinear constraints 
on the power system damping oscillations problems. 
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