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1. Introduction 

  Let 3
1R denote the 3-dimensional Lorentz 

space (Minkowski 3-space), i.e. the Euclidean 3-

space 3R with Lorentzian inner product defined by 

332211, yxyxyxyx  where .R, 3yx   

A vector   3
1321 R,,  xxxx is called space-like if 

xx, 0 or 0x , time-like if xx, 0 and null if 

0, xx for non-zero x . 

A curve 3
1R:  RI is said to be spacelike, 

timelike and null if all of its velocity vectors )(t  

are spacelike, timelike and null. When 

1)(  s ,  is arc-lenght parameterized or unit 

speed curve. 

Let be a unit speed curve in Minkowski space 3
1R . 

Then, it is possible to define a Frenet 

frame  )(),(),( sBsNsT  at every point s [5,6,8]. 

Here NT , and B are the tangent, normal and binormal 

vector field, respectively. The geometry of the curve 
 can be described by the differentiation of the 
Frenet frame, which leads to the corresponding 
Frenet equations. 
The norm of vector x is defined as  

xxx ,  

The Lorentzian sphere and hyperbolic sphere of 

radius 1 in 3
1R are given by  

  1,/R,, 3
1321

2
1  xxxxxxS  

and 

  1,/R,, 3
1321

2
0  xxxxxxH  

respectively. In differential geometry, a curve of 
constant slope or general helix in Euclidean 3-space 

3R is defined by the property that the tangent makes 
a constant angle with a fixed straight line (the axis of 
general helix). Helices are characterized by the fact 

that the ratio 



is constant along the curve, where 

 and 0 denote the torsion and curvature, 

respectively [2] .  In Minkowski space 3
1R , one 

defines a helix in a similar fashion. Several authors 
introduce different types of helices and investigate 
their properties. For instance, Izumiya and Takeuchi 
define in [3] slant helices by the property that the 
principal normal makes a constant angle with a fixed 
direction. Moreover, they have characterized that   
is a slant helix if and only if the function 

 











 






2322

2

is constant. Kula &Yayl 

investigate spherical images of tangent indicatrix of 
binormal indicatrix of slant helix and they have 
shown that spherical images are spherical helix [7]. 

In [9], we give that is Darboux helix with 0



if 

its Darboux vector makes a constant angle with a 
fixed direction d . That means  dW , is constant 

along the curve, where d is a unit vector field in 3
1R , 

BTW   and the direction of the vector d is the 
axis of the Darboux helix. We have characterized that 
a curve is a Darboux helix if and only if the 
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function
 


















 1
2

22 2
3

is constant .  A unit speed 

curve  is called a slant helix if there exist a non-

zero constant vector field U in 3
1R such that the 

function UsN ),( is constant [1]. On the other hand, 

Ali&Lopez give the following characterization of 
slant helices. 
Theorem 1. Let be a unit speed time-like curve in 

.R3
1 Then is a slant helix if and only if either one 

the next two functions 

   
























 














2322

2

2322

2

or   

is constant everywhere 22   does not vanish [1]. 
Theorem 2. Let be a unit speed space-like curve in 

.R3
1   

i) if the normal vector of  is space-like, then is a 
slant helix if and only if either one the next two 
functions 

   





















 















2
322

2

2
322

2

or   

is constant everywhere 22   does not vanish. 
ii) If the normal vector of is time-like, then is a 
slant helix if and only if the function 

 











 






2322

2

 

is constant [1]. 
The purpose of the present paper is to give a similar 
characterization for Darboux helices in Minkowski 3-

space. As a byproduct, we show that a curve in 3
1R  is 

a slant helix if and only if it is a Darboux helix. 
 

2.  Time-Like Darboux helices  
 Let be a unit speed timelike curve in 

.3
1R  The Frenet frame BNT ,,  of is given by  

)()()(  ,
)(

)(
)(  ),()( sNsTsB

s

s
sNssT 









  

where  is the Lorentzian cross product. In this 
trihedro, T is timelike vector, N and B are 

spacelike vectors. For these vectors, we 
have BNT  , TBN  , NTB  . Then we 

will use the Frenet equations 

)().()(

)().()().()(

)().()(

sNssB

sBssTssN

sNssT













 

where   and   stand for the curvature and torsion 
of the curve, respectively. When the curve   is 
timelike, we define the Darboux vector W  as 

BTW    when ., 22  WW  If we take the 

norm of the Darboux vector, we find 

22  W satisfying 

.,, BBWNNWTTW    

Case 1. We assume that W  is spacelike then, 
22   0 . Now we write the unit Darboux 

vector 0W   

BTW

BT
W

W
W











chsh0

2222
0









 

Since 0, 00 WW , 0W  is spacelike vector. If we 

take 0W  as unit space-like vector, then it defines a 

curve on the Lorentzian unit sphere .2
1S   

If we called the spherical image 
as ,     BTsWsc  chsh0  where cs is the arc 

parameter of  .  

cc ds

ds

ds

d

ds

d 
  

By taking the derivative on both sides with respect 
to s , we can write: 

 
cc ds

ds
NNBT

ds

d



chshshch 

 

 
cc

s
ds

ds
BT

ds

d
c




 shch 

 
And by taking the norm ,

cs we  

 
c

s
ds

ds
BT

c
 shch   




1

cds

ds
 

 shch BT
cs                                              (2.1)         

so, 
cs  is a timelike curve 

since 1, 22   shch
cc ss , Hence since 

the tangent 
cscT  of the indicatrix curve  is 

timelike, the curve  is timelikle. Now, we will find 

the curvature   of the curve  cs : 

cs   

ccc
s

ds

ds

dS

d

dS

d
c








  
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 






1

shchchsh NNBT
cs  

   chsh













 N

w
BT

cs


                   (2.2) 

2

1




















w
cs                            (2.3) 

For the curve  , 







c

c

c s

s

s
V







2  and so, we get: 





































2

2

222

1
1

,
1

,,
















w

VV
cc

cc
ss

ss

 

Since 0, 22 VV , 2V must be spacelike. And so,  

2
2 1 




















w
 

Curvatures of curve on surface satisfy the following 
relation 

122  g  

Then  







w
g                                                             (2.4) 

On the other hand, taking the derivative of th 

,



   
















 2th1. ,  





































22

2

                                         (2.5) 

Hence, by using the equations (2.4) and (2.5), we get: 









































22

2

22

g , 
 

,
1

2

2322




















 g  

where .22  w   

If the spherical indicatrix of the darboux vector W  is 
a Lorentzian circle or a part of Lorentzian circle, then 
the curve  is a darboux helis. 

Case 2. We assume that W  is timelike then 

022  . Now we write the unit Darboux vector 

0W : 

BTW

BT
W

W
W











shch0

2222
0









 

Since 0, 00 WW  , 0W  is time-like vector. If we 

take 0W  as unit time-like vector, then it defines a 

curve on the hyperbolic unit sphere .2
0H  If we called 

the spherical image as ,  

    BTsWsc  shch0   

where cs  is the arc parameter of   . 

cc ds

ds

ds

d

ds

d 
  

By taking the derivative on both sides with respect to 
s  , we can write: 

 
cc ds

ds
NNBT

ds

d



shchchsh   

 
cc

s
ds

ds
BT

ds

d
c




  chsh  and by taking the 

norm ,
cs  we have, 

 
c

s
ds

ds
BT

c
 shch   




1

cds

ds
, 

BT
cs  chsh                                               (2.6) 

so, 
cs  is a spacelike curve since 

1, 22   chsh
cc ss , Hence since the 

tangent 
cscT   of the indicatrix curve   is 

spacelike, the curve   is spacelike. Now, we will 

find the curvature   of the curve  cs  : 

cs   

cc
s

ds

ds

ds

d

ds

d
c


   

 






1

chshshch NNBT
cs  

 shch













 N

w
BT

cs


                        (2.7) 

2

1




















w
cs                             (2.8) 

For the curve   , 







c

c

c s

s

s
V







2  and so, we get: 
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



































2

2

222

1
1

,
1

,,
















w

VV
cc

cc
ss

ss

 

Assume that 2V  is a spacelike,  

2
2 1 




















w
 

Curvatures of curve on surface satisfy the following 
relation  

122  g  

Then 







w
g                                                              (2.9) 

On the other hand, taking the derivative of 

coth ,



    

 















 2coth1.  





































22

2

                                        (2.10) 

Hence, by using the equations (2.9) and (2.10), we 
get: 









































22

2

22

g , 
 

,
1

2

2322




















 g  

where .22  w   

If the spherical indicatrix of the darboux vector W  is 
a Lorentzian circle or a part of Lorentzian circle, then 
the curve   is a darboux helis. 

Theorem 3. Let   be a unit speed time-like curve in 

.R3
1  Then   is a Darboux helix if and only if either 

one the next two functions 

   



































 1
or  

1
2

2322

2

2322

is constant, 

with 0



 . 

Similarly, when   is a space-like , the following 
results can be obtained easily. 
Theorem 4. Let   be a unit speed space-like curve 

in .R3
1   

i) if the normal vector of   is space-like, then   is 

a Darboux helix if and only if either one the next two 
functions 

   

































 1
or   

1
2

2322

2

2322

is constant, 

with 0



 . 

ii) If the normal vector of   is time-like, then   is 
a Darboux helix if and only if the function 

 

















 1
2

2322

 is constant, with 0



 . 

As a cosequence of our main results together with the 
characterization of slant helices given in  1  , we 

easily obtain the following resuts. 

Theorem 5. Let 3
1R: I  be a curve such that 



  is not constant, where   and   are curvature of 

.  Then, α is a slant helice if and only if α is a 

Darboux helice From the previous theorem, firstly we 
are going to find the axis of the slant helices since a 
slant helice is also a darboux helice.  

 
3.  The axis of the Darboux helice (Time-Like) 
   Let   be a unit speed timelike curve in 

.R3
1  The Frenet frame  BNT ,,  of   is given by  

)()()(  ,
)(

)(
)(  ),()( sNsTsB

s

s
sNssT 









  

where   is the Lorentzian cross product.satisfying 
BNT   , TBN   , NTB   . Then we will 

use the Frenet equations 

)().()(

)().()().()(

)().()(

sNssB

sBssTssN

sNssT













 

where   and   stand for the curvature and torsion 
of the curve, respectively. We first assume that   is a 

slant helix. Let d  be the vector field such that the 

function  dN , c is constant. There exists 1a  and 

3a  such that  

cNBaTad  31                                              (3.1) 

Then, if we take the derivative of the equation (3.1) 
and by using Frenet equation, we have:  

.)c.()().( 3311 BaNaaTcad     

Since the system  BNT ,,  is linear independent, we 

get:  

01  ca  

031  aa                                                         (3.2) 
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03  ca                                                           (3.3) 

and from (3.2) and (3.1), respectively 

  . 31 aa 












                                                     (3.4) 

 constant  c, 22
3

2
1  aadd                   (3.5) 

By using the equalities (3.4) and (3.5), we obtain: 

  c-constant 22
3

2
3

2









 aa




                       (3.6) 

and from the equation (3.6) we have  

22
3

2

1 ma 


























 

where 2m  is constant. So,  

1
2

3
















m
a                                                  (3.7) 

Taking the derivative in each part of the equation 
(3.7) and by using (3.5), we get: 

 
constant  .

2
3

22

2





















                           (3.8) 

We deduce from that the curve   is slant helice 

when we have d  . Conversely, assume that the 
condition (3.8) is satisfied. In order to simplify the 
computations, we assume that the function (19) is 
constant. Define  

 c.
2222

NBTd 













                (3.9) 

A differentiation of (3.9) together the frenet equations 
gives 0d , that is, d  is a constant vector. It can 

easily be seen that ,0d  that is d  is a constant. On 

the other hand,  dN ,  c and this means that   is a 

slant helix. 
The constant direction d  is the axis of both the slant 
helice   and the darboux helice .  These axises 
coincide. 
Similarly, when   is spacelike , the following results 
can be obtained easily for axes. 
Conclusion 1. i) If the normal vector of   is 

timelike, the axis of   is 

   c.
2222

NBTd 













 

ii) If the normal vector of   is spacelike:, the axis 

of   is 

   c.
2222

NBTd 















 

 

4.  Curves of constant precession  
          Letr   be a spacelike curve (The normal 
vector of   is timelike). Then we use the following 
frenet equations 

)().()(

)().()().()(

)().()(

sNssB

sBssTssN

sNssT













 

where   and   stand for the curvature and torsion 
of the curve, respectively. Since BTW    and 

22,  WW  , then W  is a spacelike vector and 

22  W  . Recall that the centrode axis of the 

Frenet frame is given by 

NBTd .c
2222















 

and 

  c.N
W

W
d                                                    (4.1) 

where .BTW    From (4.1),  

NWWdW c...   

By  taking 22   W  , Ad .  and  

.  c   , we get NWA .  

If we take W  =constant, the darboux helice   are 

constant precession. We deduce from that [4] is true. 
A unit speed curve of constant precession is defined 
by the property that its (Frenet) Darboux vector 
revolves about a fixed line in space with angle and 
constant speed. A curve of constant precession is 
characterized by having 

)),(cos()(

),(sin()(

ss

ss








 

where 0  ,   and are constant [10]. 

Similarly, the following results can be obtained 
easily. 
Conclusion 2. i) Let   be a unit speed spacelike 

curve (the normal vector of   is spacelike) in 3
1R . A 

curve of constant precession is characterized by 
having 

)),((ch)(

),((sh)(

ss

ss








 

where 0  ,   and are constant. 

ii) Let   be a unit speed timelike curve. A curve of 
constant precession is characterized by having 

)),((sh)(

),((ch)(

ss

ss








 

where 0  ,   and are constant. 

Example 1. Let )(s  be a spacelike curve (the 
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normal vector of   is timelike) parametrized by the 
vector function: 












 )17sin(

136

15
),9cos(

144

25
)25cos(

400

9
),9sin(

144

25
)25sin(

400

9
)( ssssss

where  2,0s  . 

The spacelike curve   is rendered in the following 
figure 1. 

 

 
Fig 1. The spacelike curve α(s) 
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