Darboux Helices in Minkowski space R₁³

Ali Şenol¹, Evren Zıplar², Yusuf Yaylı³, Raheleh Ghadami⁴

¹Cankiri Karatekin University, Faculty of Science, Department of Mathematics, Cankiri, Turkey ^{2,3,4}Department of Mathematics, Faculty of Science, University of Ankara, Tandoğan, Ankara, Turkey (Senol) asenol@karatekin.edu.tr

Abstract: In the present study, we give the conditions for a curve in the Minkowski space to be a Darboux helix. We show that α is a Darboux helix if there exists a fixed direction d in R_1^3 such that the function $\langle W(s), d \rangle$ is constant. We give the relation between slant helice and Darboux helice. As a particular case, if we take ||w|| = constant, the curves are constant precession. Some more particular cases of constant precession curves are studied.

[Şenol A, Zıplar E, Yayli Y, Ghadami R. **Darboux Helices in Minkowski space** R₁³. *Life Sci J* 2012;9(4):5905-5910] (ISSN:1097-8135). <u>http://www.lifesciencesite.com</u>. 884

Keywords: Minkowski 3-space, Frenet equations, Helices, Slant helices, Curves of constant precession, Darboux vector

1. Introduction

Let R_1^3 denote the 3-dimensional Lorentz space (Minkowski 3-space), i.e. the Euclidean 3space R^3 with Lorentzian inner product defined by $\langle x, y \rangle = x_1y_1 + x_2y_2 - x_3y_3$ where $x, y \in R^3$.

A vector $x = (x_1, x_2, x_3) \in \mathbb{R}^3_1$ is called space-like if $\langle x, x \rangle > 0$ or x = 0, time-like if $\langle x, x \rangle < 0$ and null if $\langle x, x \rangle = 0$ for non-zero x.

A curve $\alpha : I \subset R \to \mathbb{R}^3_1$ is said to be spacelike, timelike and null if all of its velocity vectors $\alpha'(t)$ are spacelike, timelike and null. When $|\alpha'(s)| = 1$, α is arc-lenght parameterized or unit speed curve.

Let α be a unit speed curve in Minkowski space \mathbb{R}_1^3 . Then, it is possible to define a Frenet frame $\{T(s), N(s), B(s)\}$ at every point *s* [5,6,8]. Here *T*, *N* and *B* are the tangent, normal and binormal vector field, respectively. The geometry of the curve α can be described by the differentiation of the Frenet frame, which leads to the corresponding Frenet equations.

The norm of vector x is defined as

$$\|x\| = \sqrt{\left|\left\langle x, x\right\rangle\right|}$$

The Lorentzian sphere and hyperbolic sphere of radius 1 in R_1^3 are given by

$$S_1^2 = \left\{ x = (x_1, x_2, x_3) \in \mathbb{R}_1^3 \ / \ \langle x, x \rangle = 1 \right\}$$

and

 $H_0^2 = \left\{ x = \left(x_1, x_2, x_3 \right) \in \mathbb{R}_1^3 / \left\langle x, x \right\rangle = -1 \right\}$

respectively. In differential geometry, a curve of constant slope or general helix in Euclidean 3-space R^3 is defined by the property that the tangent makes a constant angle with a fixed straight line (the axis of general helix). Helices are characterized by the fact that the ratio $\frac{\tau}{\tau}$ is constant along the curve, where τ and $\kappa \neq 0$ denote the torsion and curvature, respectively [2] \cdot In Minkowski space R_1^3 , one defines a helix in a similar fashion. Several authors introduce different types of helices and investigate their properties. For instance, Izumiya and Takeuchi define in [3] slant helices by the property that the principal normal makes a constant angle with a fixed direction. Moreover, they have characterized that α is a slant helix if and only if the function $\frac{\kappa^2}{(\kappa^2 + \tau^2)^{3/2}} \left(\frac{\tau}{\kappa}\right)'$ is constant. Kula &Yavl investigate spherical images of tangent indicatrix of binormal indicatrix of slant helix and they have shown that spherical images are spherical helix [7]. In [9], we give that α is Darboux helix with $\frac{\tau}{\alpha} \neq 0$ if its Darboux vector makes a constant angle with a

fixed direction d. That means $\langle W, d \rangle$ is constant along the curve, where d is a unit vector field in \mathbb{R}^3_1 , $W = \tau T + \kappa B$ and the direction of the vector d is the axis of the Darboux helix. We have characterized that a curve is a Darboux helix if and only if the function $\frac{\left(\tau^2 + \kappa^2\right)^3}{\kappa^2} \frac{1}{\left(\frac{\tau}{\kappa}\right)'}$ is constant \cdot A unit speed

curve α is called a slant helix if there exist a nonzero constant vector field U in \mathbb{R}^3_1 such that the function $\langle N(s), U \rangle$ is constant [1]. On the other hand, Ali&Lopez give the following characterization of slant helices.

Theorem 1. Let α be a unit speed time-like curve in R_1^3 . Then α is a slant helix if and only if either one the next two functions

$$\frac{\kappa^2}{(\tau^2 - \kappa^2)^{3/2}} \left(\frac{\tau}{\kappa}\right) \text{ or } \frac{\kappa^2}{(\kappa^2 - \tau^2)^{3/2}} \left(\frac{\tau}{\kappa}\right)$$

is constant everywhere $\tau^2 - \kappa^2$ does not vanish [1]. **Theorem** 2. Let α be a unit speed space-like curve in R_1^3 .

i) if the normal vector of α is space-like, then α is a slant helix if and only if either one the next two functions

$$\frac{\kappa^2}{\left(\tau^2 - \kappa^2\right)\frac{3}{2}} \left(\frac{\tau}{\kappa}\right) \text{ or } \frac{\kappa^2}{\left(\kappa^2 - \tau^2\right)\frac{3}{2}} \left(\frac{\tau}{\kappa}\right)$$

is constant everywhere $\tau^2 - \kappa^2$ does not vanish. ii) If the normal vector of α is time-like, then α is a slant helix if and only if the function

$$\frac{\kappa^2}{\left(\tau^2 + \kappa^2\right)^{3/2}} \left(\frac{\tau}{\kappa}\right)'$$

is constant [1].

The purpose of the present paper is to give a similar characterization for Darboux helices in Minkowski 3-space. As a byproduct, we show that a curve in R_1^3 is a slant helix if and only if it is a Darboux helix.

2. Time-Like Darboux helices

Let α be a unit speed timelike curve in

 R_1^3 . The Frenet frame $\{T, N, B\}$ of α is given by

$$T(s) = \alpha'(s), \quad N(s) = \frac{\alpha''(s)}{\|\alpha''(s)\|}, \quad B(s) = T(s)\Lambda N(s)$$

where Λ is the Lorentzian cross product. In this trihedro, *T* is timelike vector, *N* and *B* are spacelike vectors. For these vectors, we have $T\Lambda N = B$, $N\Lambda B = -T$, $B\Lambda T = N$. Then we will use the Frenet equations

$$T'(s) = \kappa(s).N(s)$$

$$N'(s) = \kappa(s).T(s) + \tau(s).B(s)$$

$$B'(s) = -\tau(s).N(s)$$

where κ and τ stand for the curvature and torsion of the curve, respectively. When the curve α is timelike, we define the Darboux vector W as $W = \tau T + \kappa B$ when $\langle W, W \rangle = \kappa^2 - \tau^2$. If we take the norm of the Darboux vector, we find $||W|| = \sqrt{|\kappa^2 - \tau^2|}$ satisfying $W \Delta T = T', W \Delta N = N', W \Delta B = B'$.

Case 1. We assume that W is spacelike then,

 $\kappa^2 - \tau^2 > 0$. Now we write the unit Darboux vector W_0

$$W_0 = \frac{W}{\|W\|} = \frac{\tau}{\sqrt{\kappa^2 - \tau^2}} T + \frac{\kappa}{\sqrt{\kappa^2 - \tau^2}} B$$
$$W_0 = \operatorname{sh} \phi T + \operatorname{ch} \phi B$$

Since $\langle W_0, W_0 \rangle > 0$, W_0 is spacelike vector. If we take W_0 as unit space-like vector, then it defines a curve on the Lorentzian unit sphere S_1^2 .

If we called the spherical image as β , $\beta(s_c) = W_0(s) = \operatorname{sh}\phi T + \operatorname{ch}\phi B$ where s_c is the arc parameter of β .

$$\frac{d\beta}{ds_c} = \frac{d\beta}{ds} \frac{ds}{ds_c}$$

By taking the derivative on both sides with respect to *s*, we can write:

$$\frac{d\beta}{ds_c} = (\phi' ch\phi T + \phi' sh\phi B + \kappa sh\phi N - \tau ch\phi N) \frac{ds}{ds_c}$$
$$\beta_{s_c} = \frac{d\beta}{ds_c} = (\phi' ch\phi T + \phi' sh\phi B) \frac{ds}{ds_c}$$

And by taking the norm β_{s_c} , we

$$\|\beta_{s_c}\| = \left\| (\phi' \operatorname{ch} \phi T + \phi' \operatorname{sh} \phi B) \frac{ds}{ds_c} \right\|$$
$$\frac{ds}{ds_c} = \frac{1}{\phi'}$$
$$\beta_{s_c} = \operatorname{ch} \phi T + \operatorname{sh} \phi' B \qquad (2.1)$$

so, β_{s_c} is a timelike curve since $\langle \beta_{s_c}, \beta_{s_c} \rangle = -ch^2 \phi + sh^2 \phi = -1$, Hence since the tangent $T_c = \beta_{s_c}$ of the indicatrix curve β is timelike, the curve β is timelikle. Now, we will find the curvature κ_{β} of the curve $\beta(s_c)$:

$$\kappa_{\beta} = \|\beta''\| = \|\beta'_{s_{c}}\|$$
$$\beta'_{s_{c}} = \frac{d\beta'}{dS_{c}} = \frac{d\beta'}{dS_{c}}\frac{ds}{ds_{c}}$$

$$\beta'_{s_c} = (\phi' \mathrm{sh}\phi T + \phi' \mathrm{ch}\phi B + \kappa \mathrm{ch}\phi N - \tau \mathrm{sh}\phi' N) \frac{1}{\phi'}$$

$$\beta_{s_c}' = \left(\operatorname{sh} \phi T + \operatorname{ch} \phi B + \frac{\|w\|}{\phi} N \right)$$
(2.2)

$$\kappa_{\beta} = \left\| \beta_{s_{c}}^{\prime} \right\| = \sqrt{1 + \left(\frac{\left\| w \right\|}{\phi^{\prime}} \right)^{2}}$$
(2.3)

For the curve β , $V_2 = \frac{\beta'_{s_c}}{\|\beta'_{s_c}\|} = \frac{\beta'_{s_c}}{\kappa_{\beta}}$ and so, we get:

Since $\langle V_2, V_2 \rangle \ge 0$, V_2 must be spacelike. And so,

$$\kappa_{\beta}^{2} = 1 + \left(\frac{\|w\|}{\phi'}\right)^{2}$$

Curvatures of curve on surface satisfy the following relation

$$\kappa_{\beta}^{2} = \kappa_{g}^{2} + 1$$

Then
$$\kappa_{g} = \frac{\|w\|}{\phi'}$$
(2.4)

On the other hand, taking the derivative of th

$$\phi = \frac{\tau}{\kappa}, \ \phi' \cdot \left(1 - \text{th}^2 \phi \right) = \left(\frac{\tau}{\kappa} \right)',$$
$$\phi' = \left(\frac{\kappa^2}{\kappa^2 - \tau^2} \right) \left(\frac{\tau}{\kappa} \right)'$$
(2.5)

Hence, by using the equations (2.4) and (2.5), we get:

$$\kappa_g = \frac{\sqrt{\kappa^2 - \tau^2}}{\left(\frac{\kappa^2}{\kappa^2 - \tau^2}\right)\left(\frac{\tau}{\kappa}\right)'}, \ \kappa_g = \frac{\left(\kappa^2 - \tau^2\right)^{3/2}}{\kappa^2} \frac{1}{\left(\frac{\tau}{\kappa}\right)'},$$

where $||w|| = \sqrt{\kappa^2 - \tau^2}$.

If the spherical indicatrix of the darboux vector W is a Lorentzian circle or a part of Lorentzian circle, then the curve α is a darboux helis.

Case 2. We assume that *W* is **timelike** then $\kappa^2 - \tau^2 < 0$. Now we write the unit Darboux vector W_0 :

$$W_0 = \frac{W}{\|W\|} = \frac{\tau}{\sqrt{\tau^2 - \kappa^2}} T + \frac{\kappa}{\sqrt{\tau^2 - \kappa^2}} B$$
$$W_0 = \operatorname{ch} \phi T + \operatorname{sh} \phi B$$

Since $\langle W_0, W_0 \rangle < 0$, W_0 is time-like vector. If we take W_0 as unit time-like vector, then it defines a curve on the hyperbolic unit sphere H_0^2 . If we called the spherical image as β , $\beta(s_c) = W_0(s) = \operatorname{ch}\phi T + \operatorname{sh}\phi B$

where s_c is the arc parameter of β .

$$\frac{d\beta}{ds_c} = \frac{d\beta}{ds} \frac{ds}{ds_c}$$

By taking the derivative on both sides with respect to s, we can write:

$$\frac{d\beta}{ds_c} = (\phi' \operatorname{sh} \phi T + \phi' \operatorname{ch} \phi B + \kappa \operatorname{ch} \phi N - \tau \operatorname{sh} \phi N) \frac{ds}{ds_c}$$
$$\beta_{s_c} = \frac{d\beta}{ds_c} = (\phi' \operatorname{sh} \phi T + \phi' \operatorname{ch} \phi' B) \frac{ds}{ds_c} \text{ and by taking the}$$

norm β_{s_c} , we have,

$$\begin{split} \left\| \beta_{s_c} \right\| &= \left\| \left(\phi' \mathrm{ch} \, \phi T - \phi' \mathrm{sh} \, \phi B \right) \frac{ds}{ds_c} \right\| \\ \frac{ds}{ds_c} &= \frac{1}{\phi'} \,, \\ \beta_{s_c} &= \mathrm{sh} \, \phi T + \mathrm{ch} \, \phi B \end{split} \tag{2.6}$$

so, β_{s_c} is a spacelike curve since $\langle \beta_{s_c}, \beta_{s_c} \rangle = -sh^2 \phi + ch^2 \phi = 1$, Hence since the tangent $T_c = \beta_{s_c}$ of the indicatrix curve β is spacelike, the curve β is spacelike. Now, we will find the curvature κ_{β} of the curve $\beta(s_c)$:

$$\kappa_{\beta} = \left\| \beta_{s_{c}}^{\prime} \right\|$$

$$\beta_{s_{c}}^{\prime} = \frac{d\beta}{ds_{c}} = \frac{d\beta}{ds} \frac{ds}{ds_{c}}$$

$$\beta_{s_{c}}^{\prime} = \left(\phi^{\prime} ch \phi T + \phi^{\prime} sh \phi B + \kappa sh \phi N - \tau ch \phi^{\prime} N \right) \frac{1}{\phi^{\prime}}$$

$$\beta_{s_{c}}^{\prime} = \left(ch \phi T + sh \Phi B - \frac{\|w\|}{\phi} N \right) \qquad (2.7)$$

$$\kappa_{\beta} = \left\| \beta_{s_{c}}^{\prime} \right\| = \sqrt{-1 + \left(\frac{\|w\|}{\phi^{\prime}} \right)^{2}} \qquad (2.8)$$

For the curve β , $V_2 = \frac{\beta'_{s_c}}{\|\beta'_{s_c}\|} = \frac{\beta'_{s_c}}{\kappa_{\beta}}$ and so, we get:

$$\langle V_2, V_2 \rangle = \left\langle \frac{\beta'_{s_c}}{\kappa_{\beta}}, \frac{\beta'_{s_c}}{\kappa_{\beta}} \right\rangle = \frac{1}{\kappa_{\beta}^2} \left\langle \beta'_{s_c}, \beta'_{s_c} \right\rangle$$

$$= \frac{1}{\kappa_{\beta}^2} \left[-1 + \left(\frac{\|w\|}{\phi'}\right)^2 \right]$$

Assume that V_2 is a spacelike,

$$\kappa_{\beta}^2 = -1 + \left(\frac{\|w\|}{\phi'}\right)^2$$

Curvatures of curve on surface satisfy the following relation

$$\kappa_{\beta}^2 = \kappa_g^2 - 1$$

Then

 $\kappa_g = \frac{\|w\|}{\phi'} \tag{2.9}$

$$\begin{aligned} &\phi' = \left(\frac{\kappa^2}{\kappa^2 - \tau^2}\right) \left(\frac{\tau}{\kappa}\right)' \\ &\phi' = \left(\frac{\kappa^2}{\kappa^2 - \tau^2}\right) \left(\frac{\tau}{\kappa}\right)' \end{aligned} \tag{2.10}$$

Hence, by using the equations (2.9) and (2.10), we get:

$$\kappa_g = \frac{\sqrt{\tau^2 - \kappa^2}}{\left| \left(\frac{\kappa^2}{\kappa^2 - \tau^2} \right) \left(\frac{\tau}{\kappa} \right)' \right|}, \ \kappa_g = \frac{\left(\tau^2 - \kappa^2 \right)^{3/2}}{\kappa^2} \frac{1}{\left(\frac{\tau}{\kappa} \right)'},$$

where $||w|| = \sqrt{\tau^2 - \kappa^2}$.

If the spherical indicatrix of the darboux vector W is a Lorentzian circle or a part of Lorentzian circle, then the curve α is a darboux helis.

Theorem 3. Let α be a unit speed **time-like** curve in R_1^3 . Then α is a Darboux helix if and only if either one the next two functions

$$\frac{\left(\kappa^2 - \tau^2\right)^{3/2}}{\kappa^2} \frac{1}{\left(\frac{\tau}{\kappa}\right)'} \text{ or } \frac{\left(\tau^2 - \kappa^2\right)^{3/2}}{\kappa^2} \frac{1}{\left(\frac{\tau}{\kappa}\right)'} \text{ is constant,}$$

with $\frac{\tau}{\kappa} \neq 0$.

Similarly, when α is a space-like , the following results can be obtained easily.

Theorem 4. Let α be a unit speed space-like curve in R_1^3 .

i) if the normal vector of α is **space-like**, then α is

a Darboux helix if and only if either one the next two functions

$$\frac{\left(\tau^2 - \kappa^2\right)^{3/2}}{\kappa^2} \frac{1}{\left(\frac{\tau}{\kappa}\right)'} \text{ or } \frac{\left(\kappa^2 - \tau^2\right)^{3/2}}{\kappa^2} \frac{1}{\left(\frac{\tau}{\kappa}\right)'} \text{ is constant,}$$

with $\frac{\iota}{\kappa} \neq 0$.

ii) If the normal vector of α is **time-like**, then α is a Darboux helix if and only if the function $\frac{\left(\tau^2 + \kappa^2\right)^{3/2}}{\kappa^2} \frac{1}{\left(\frac{\tau}{\kappa}\right)^{\prime}}$ is constant, with $\frac{\tau}{\kappa} \neq 0$.

As a cosequence of our main results together with the characterization of slant helices given in [1], we easily obtain the following results.

Theorem 5. Let $\alpha : I \to \mathbb{R}^3_1$ be a curve such that $\frac{\kappa}{\tau}$ is not constant, where κ and τ are curvature of α . Then, α is a slant helice if and only if α is a Darboux helice From the previous theorem, firstly we are going to find the axis of the slant helices since a slant helice is also a darboux helice.

3. The axis of the Darboux helice (Time-Like)

Let α be a unit speed timelike curve in

 R_1^3 . The Frenet frame $\{T, N, B\}$ of α is given by

$$T(s) = \alpha'(s), \ N(s) = \frac{\alpha''(s)}{\|\alpha''(s)\|}, \ B(s) = T(s)\Lambda N(s)$$

where Λ is the Lorentzian cross product.satisfying $T\Lambda N = B$, $N\Lambda B = -T$, $B\Lambda T = N$. Then we will use the Frenet equations $T'(s) = \kappa(s) N(s)$

$$N'(s) = \kappa(s).N(s)$$
$$N'(s) = \kappa(s).T(s) + \tau(s).B(s)$$
$$B'(s) = -\tau(s).N(s)$$

where κ and τ stand for the curvature and torsion of the curve, respectively. We first assume that α is a slant helix. Let d be the vector field such that the function $\langle N, d \rangle = c$ is constant. There exists a_1 and a_3 such that

$$d = a_1 T + a_3 B + cN \tag{3.1}$$

Then, if we take the derivative of the equation (3.1) and by using Frenet equation, we have:

$$d' = (a_1 + c.\kappa)T + (a_1\kappa - \tau a_3)N + (a_3 + c.\tau)B.$$

Since the system $\{T, N, B\}$ is linear independent, we get:

$$a_1 + c\kappa = 0$$

$$a_1\kappa - \tau a_3 = 0 \tag{3.2}$$

$$a'_3 + c\tau = 0$$
 (3.3)
and from (3.2) and (3.1), respectively

$$a_1 = \left(\frac{\tau}{\kappa}\right) a_3 \tag{3.4}$$

$$\langle d, d \rangle = -a_1^2 + a_3^2 + c^2 = \text{constant}$$
 (3.5)

By using the equalities (3.4) and (3.5), we obtain:

$$-\left(\frac{\tau}{\kappa}\right)^2 a_3^2 + a_3^2 = \text{constant} - c^2$$
(3.6)

and from the equation (3.6) we have

$$\left(\left(\frac{\tau}{\kappa}\right)^2 - 1\right)a_3^2 = m^2$$

where m^2 is constant. So,

$$a_3 = \frac{m}{\sqrt{\left(\frac{\tau}{\kappa}\right)^2 - 1}}$$
(3.7)

Taking the derivative in each part of the equation (3.7) and by using (3.5), we get:

$$\frac{\kappa^2}{\left(\tau^2 - \kappa^2\right)^{\frac{3}{2}}} \cdot \left(\frac{\tau}{\kappa}\right)' = \text{constant}$$
(3.8)

We deduce from that the curve α is slant helice when we have d. Conversely, assume that the condition (3.8) is satisfied. In order to simplify the computations, we assume that the function (19) is constant. Define

$$d = \frac{\tau}{\sqrt{\tau^2 - \kappa^2}} T + \frac{\kappa}{\sqrt{\tau^2 - \kappa^2}} B + c.N$$
(3.9)

A differentiation of (3.9) together the frenet equations gives d' = 0, that is, d is a constant vector. It can easily be seen that d' = 0, that is d is a constant. On the other hand, $\langle N, d \rangle = c$ and this means that α is a slant helix.

The constant direction d is the axis of both the slant helice α and the darboux helice α . These axises coincide.

Similarly, when α is spacelike, the following results can be obtained easily for axes.

Conclusion 1. i) If the normal vector of α is timelike, the axis of α is

$$d = \frac{\tau}{\sqrt{\tau^2 + \kappa^2}}T + \frac{\kappa}{\sqrt{\tau^2 + \kappa^2}}B + c.N$$

ii) If the normal vector of α is spacelike:, the axis of α is

$$d = \frac{-\tau}{\sqrt{\tau^2 - \kappa^2}}T + \frac{\kappa}{\sqrt{\tau^2 - \kappa^2}}B + c.N$$

4. Curves of constant precession

Let α be a spacelike curve (The normal vector of α is timelike). Then we use the following frenet equations

$$T'(s) = \kappa(s).N(s)$$
$$N'(s) = \kappa(s).T(s) + \tau(s).B(s)$$
$$B'(s) = \tau(s).N(s)$$

where κ and τ stand for the curvature and torsion of the curve, respectively. Since $W = \tau T - \kappa B$ and $\langle W, W \rangle = \tau^2 + \kappa^2$, then W is a spacelike vector and $||W|| = \sqrt{\tau^2 + \kappa^2}$. Recall that the centrode axis of the Frenet frame is given by

$$d = \frac{\tau}{\sqrt{\tau^2 + \kappa^2}} T + \frac{\kappa}{\sqrt{\tau^2 + \kappa^2}} B + c.N$$

and
$$d = \frac{W}{\|W\|} + c.N$$

where $W = \tau T + \kappa B$ From (4.1)

where $W = \tau I + \kappa B$. From (4.1), ||W|| d = W + ||W|| c.N

By taking $\varpi = ||W|| = \sqrt{\tau^2 + \kappa^2}$, $\varpi.d = A$ and $\varpi. c = \mu$, we get $A = W + \mu.N$

If we take ||W|| =constant, the darboux helice α are

constant precession. We deduce from that [4] is true. A unit speed curve of constant precession is defined by the property that its (Frenet) Darboux vector revolves about a fixed line in space with angle and constant speed. A curve of constant precession is characterized by having

$$\kappa(s) = \varpi \sin(\mu(s))$$

$$\tau(s) = \varpi \cos(\mu(s)),$$

where $\omega > 0$, μ and are constant [10].

Similarly, the following results can be obtained easily.

Conclusion 2. i) Let α be a unit speed spacelike curve (the normal vector of α is spacelike) in R_1^3 . A curve of constant precession is characterized by having

$$\kappa(s) = -\varpi \mathrm{sh}(\mu(s),$$

$$\tau(s) = \operatorname{\sigmach}(\mu(s)),$$

where $\sigma \rangle 0$, μ and are constant.

ii) Let α be a unit speed timelike curve. A curve of constant precession is characterized by having $\kappa(s) = \varpi ch(\mu(s), c)$

$$\tau(s) = -\varpi \mathrm{sh}(\mu(s)),$$

where $\sigma > 0$, μ and are constant.

Example 1. Let $\alpha(s)$ be a spacelike curve (the

normal vector of α is timelike) parametrized by the vector function:

$$\alpha(s) = \left(\frac{9}{400}\sin(25s) + \frac{25}{144}\sin(9s), \frac{-9}{400}\cos(25s) + \frac{25}{144}\cos(9s), \frac{15}{136}\sin(17s)\right)$$

where $s \in [0, 2\pi]$.

The spacelike curve α is rendered in the following figure 1.

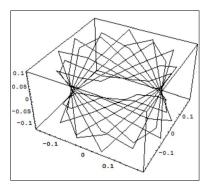


Fig 1. The spacelike curve $\alpha(s)$

Corresponding Author:

Ali Şenol Department of Mathematics, Faculty of Science, University Cankiri Karatekin, Cankiri - Turkey E-mail: <u>asenol@karatekin.edu.tr</u>

12/29/2012

References

- Ahmad T. Ali and R. Lopez, Slant Helices in Minkowski space R₁³, J. Korean Math. Soc. 48, (2011), No. 1, pp. 159-167.
- 2. M. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976.
- 3. Izumiya, S and Tkeuchi, N. New special curves developable surfaces, Turk J. Math. 28, 153-163 (2004).
- 4. Sco.eld, P.D. Curves of constant precession. Am. Math. Montly 102 (1995), 531-537.
- W. Kuhnel, Differential Geometry: Curves, Surfaces, Manifolds, Weisbaden: Braunschweing, 1999.
- R. Lopez, Differential geometry of curves and surfaces in Lorentz-Minkowskiamiltton, space, arXiv: 08103351 v1, 2008.
- Kula, L and Yaylı Y. 2005 On slant helix and its spherical indicatrix. Applied Mathematics and computation 169, 600-607.
- J. Walrave, Curves and surfaces in Minkowski space, Doctoral Thesis, K.U. Leuven, Fac. Sci., Leuven, 1995.
- Zıplar E, Senol A, Yaylı Y., On Darboux Helices in Euclidean 3-space, Global Journal of Science Frontier Research Mathematics and Decision Sciences, Vol 12, Issue 13, Version 1.0, 2012.
- Yaylı Y, Hacısalihoğlu H.H, Closed curves in the minkowski 3-spaceHadronic journal 23, sun 259-272 (2000).