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Abstract: In the present article, we apply variational iteration method to obtain the numerical solution of 
Volterra and Fredholm integral equations of the second kind. The method constructs a convergent 
sequence of functions, which approximates the exact solution with little iteration. Application of this 
method in finding the approximate solution of  some examples confi rms its validity. We use the symbolic 
algebra program, Maple, 15, to prove our results. 
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1. Introduction 

Since the integral equations, [2,9,10], appear 
frequently in modelling of physical phenomena, 
they have a major role in the fields of science 
and engineering, and considerable amount of 
research work has been done in studying them. 

The variational iteration method, [1, 3, 4, 6, 
11, 12], is one of the useful techniques in solving 
linear and non- linear problems. In the present 
study, we aim to employ the variational 
iteration method (VIM) to obtain the 
approximate solutions of integral equations. This 
method gives the exact solution rapidly 
convergent successive approximations if such 
a solution exists [7,8]. 

 
2. Variational iteration method 
Consider the following nonlinear differential equation 

).(,g(x)Ny(x)Ly(x) 12   

where L is a linear operator, N is a nonlinear operator 
and g(x) is a known analytical function. According to 
the (VIM),a correction functional can be constructed 
as: 
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where λ is a general multiplier and the term ŷn is 

considered as a restricted variational i.e. δŷn = 0. 

Making the above correction funct ion stationary 
we obtain:  
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In order to identify the Lagrange multiplier, from 
equation (2.3) we have:- 
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where 0y  is an initial approximation which 

possible unknown the successive approximations 

)(xyn of the solution )(xy can be readily 

obtained. 
 
3. Solution of Volterra and Fredholm 
integral equation of the second kind 

Consider the Volterra and  Fredholm integral 
equations of the second kind in the form: 


x

a

dttytxkxfxy ,)(),()()(         (3.1)   

and 

  
b

a

dttytxkxfxy ,)(),()()(       (3.2) 

where )(xy  is unknown function, )(xf and 

),( txk are given functions in btxa  , . For 

Volterra i n t e g r a l  equation we take the partial 
derivatives with respect to x we have:  


x

a
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d
xfxy ,)(),()()( (3.3) 

and for Fredholm integral equation of the second 
kind, by differentiate both side of that equation by 
parts we get: 
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Consider; 
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as a restricted variational , we use (VIM)in direction 
x  . 
Then we have the following iteration sequence 

 Taking 
with 

respect 
to the independent 

variable )(xyn  and noticing that 0)0( ny , we 

get: 

Then we apply the following stationary conditions: 

  0)(;01   xx    

 
The general Lagrange multiplier can be readily 
identified: 

1           (3.7) 

Then we obtain the following iteration formula: 

  In case of Volterra  integral  equations  (3.1), 

and
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in case of Fredholm integral equation (3.2). 

Starting with in i t ia l  a p pr ox i m a t i on 0y   in 

(3.8) and (3.9), the successive approximations ny  

will be easy obtained 
4. Numerical examples 
In this section, we applied the method in some 
examples to show the efficiently of the approach. 
 
Example 1. 
Consider the following linear Fredholm integral 
equation  

 
 
 

 
with exact solution     
                

In the view of (VIM), we construct a correction 
functional in the following form 
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Starting with the initial approximation 

4
)sin()(0

x
xxy  in equation (3.12), 

successive approximations )(xyi will be achieved. 

The absolute error between the exact solution and the 
4th order of approximate solution is shown in table 
1 
 
Table 1: 
x Approximate 

solution 
Exact solution Absolute 

solution 

0  0 0 0 

16


 

0.1945561472 0.195090322 5.3417485E-
4 

8


 

0.3816150827 0.382683432 1.0683493E-
3 

16

3
 

0.5539677085 0.555570233 1.0602533E-
3 

4


 

0.7049700818 0.7071067812 1.0602533E-
3 

16

5
 

0.828798738 0.8314696123 2.7670874E-
3 

8

3
 

0.92067448 0.9238795325 3.2050525E-
3 

16

7
 

0.9770460564 0.980785258 3.739224E-3 

2


 

0.9957266 1 4.2734E-3 

 
Example2. 
 Consider the following linear Volterra integral 
equation[5] : 

 
x

dttytxxy
0

,)()(1)(                       (3.13) 

   with exact solution: 

)cos()( xxy                                       (3.14) 

In the view of (VIM), we construct a correction 
functional in the following form 
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Starting with the initial approximat ion  

  10 xy in equation ( 3.15), successive 

approximations )(xyi will be achieved. The 
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absolute error between the exact solution and the 
third order of approximate solution is shown in 

table 2. 
 

Table2: 

x  Approximate solution     Exact solution     Absolute error 

0 1 1 0 

8


 

0.923879 0.9238795 5.32511E-7 

4


 

0.7071032 0.7071067812 3.5811865E-6 

8

3
 

 
0.3825928 

 
0.382683432 

 
9.063236E-5 

2


 

-8.94522998E-4 0 -8.94522998E-4 

 

Example 3. 
Consider the following nonlinear Fredholm 
integral equation : 


1

0

222 ,)(
2

1

12

11
)( dttytxxxy                (3.16) 

with  exact solution 
2)( xxy                                              (3.17) 

In the view of (VIM), we construct a correction 
functional in the following form 
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Starting with  the  initial approximation 

2
0

12

11
)( xxy    in equation (3.18),  successive 

approximations )(xyi  will be achieved.  The 

absolute er r or  between the exact solution and   
The third order of approximate solution is shown in 
table 3 

Table 3: 

x Approximate solution Exact solution Absolute error 

0 0 0 0 

0.2 0.03999868 0.04 1.32E-6 

0.4 0.15999472 0.16 5.28E-6 

0.6 0.35998812 0.36 1.188E-5 

    0.8 0.63997888 0.64 2.112E-5 
  1 0.999967 1    3.3E-5 

 

Example 4. 
Consider the following nonlinear Fredholm 
integral equation  

)19.3(,)(
2

1

32

15
)(

1

0

2

 dttyxtxxy  

with exact solution 

)20.3(.
2

)(
x
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In the view of (VIM), we construct a correction 
functional in the following form 
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Starting with the initial approximation 

xxy
32

15
)(0   in equation (3.21), successive 

approximations )(xyi  will be achieved. The 

absolute error  between the exact solution and the 
4th order of approximate solution is shown in table 
4. 
 

 
 
 
Table 4.  
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X Approximate solution Exact solution Absolute error 
 
0 

 
0 

 
0 

 
0 

0.2 0.0999985 0.1 1.5E-6 
0.4 0.1999970477 0.2 2.9523E-6 
0.6 0.29999557152 0.3 4.4285E-6 
0.8 0.399994095 0.4 5.905E-6 
1 0.4999926192 0.5 7.3808E-6 
 
 

 
 

Figure 1: The plots of approximate solution of 
4th order and exact solution for Example 1 

 
 

 
 

Figure 2: The plots of approximate solution of 
third order  and exact solution for Example 2 

 
 

 
 

 
Figure 3: The plots of approximate solution of 5th 
order and exact solution for Example 3 
 
 

 
 
Figure 4: The plots of approximate solution of 3th 
order and exact solution for Example 4  



Life Science Journal 2012;9(4)                                                               http://www.lifesciencesite.com 

 5456 

 
 
Corresponding author 
M. H. Ahmed 
Mathematics Department, Faculty of Science, 
Zagazig University, Zagazig, Egypt 
dr.reem2@yahoo.com  
 
References: 
 [1] Abdul-Majid wazwaz; The variational 

iteration method for exact solutions of Laplace 
equation. phys. Lett.A363(2007)260-262. 

[2] Biazar J.,P.Gholamin,K.Hosseini;Variational 
iteration method for solving Fokker-planck 
equa- tion .Journal of the Franklin Institue, 
Vol(347), iss(7), (2010),1137-1147. 

 [3] He J.H.;Variational principal for some 
nonlinear partial differential equation with 
variable coef- ficients. Chaos Solitons Fractals, 
19(2004) 847-851. 

[4] Ji-Huan He; Notes on the optimal variational 
iteration method. Applied Mathematics 
Letter,Vol(25), iss(10), (2012), 1579-1581. 

[5] Maleknejad K.,N.Aghazadeh; Numerical 
solution of Volterra integral equations of the 
second kind with convolution kernel by using 
Taylor-series expansion method. Applied 
Mathematics Computation,161(2005)915-922. 

[6] Lan Xu; Variational iteration method for 
solving integral equations. Computers and 

Mathe- matics with Applications, 
54(2007):1071-1078. 

[7] Mehdi Golami Porshokouhi,Behzad Ghanbari 
and Majid Rashidi; Variational iteration 
method for solving Volterra and Frednolm 
integral equations of the second kind. 
Gen.Math.Notes,Vol(2), No(1),(2011),143-148. 

[8] Rahman M.; Integral Equatins and their 
Applications. Britain Athenaeum Press Ltd, 
2007. 

[9] Hakank.Akmaz; Variational iteration method 
for  elastodynamic Green’s functions. 
Nonlinear- Analysis:Theory,Methods and 
Applications,Vol(71),iss(12),(2009),218-223. 

[10] Saadat R., M. Dehghan, S. M. vaezpour, M. 
Saravi; The convergrnce of He’s variational 
iteration method for solving integral 
equations.Computers and Mathematics with 
Applications. Vol(58), iss(11),(2009),2167-
2171. 

[11] Xin-weizhou,Li Yau;The Variational iteration 
method for Cauchy problems.Computers and 
Mathematics with Applications. Vol(60), 
iss(3),(2010),756-760. 

[12] Yongxiang Zhao,Aiguo Xiao; Variational 
iteration method for solving perturbation initial 
value problems. Computer Physics 
Communications. Vol(181), iss(5), (2012), 947-
956. 

 
 
 
11/22/2012 


