Detection of LTR Retrotransposons Reactivation induced by in vitro Environmental Stresses in Barley (Hordeum vulgare) via RT-qPCR

A.M. Alzohairy1*, M.A. Yousef3, S. Edris2, B. Kerti4, G. Gyulai4, J.S.M. Sabir2, N.A. Radwan2, M.N. Baeshen2, N.A. Baeshen2, and A. Bahieldin2,3*

1Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
2Department of Biological Sciences, Faculty of Science, King Abdullah University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia, bahieldin55@gmail.com
3Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
4Institute of Genetics and Biotechnology, St. Stephanus University, Gödöllő, H-2103, Hungary

Abstract: The effects of four environmental stresses of heat, drought, wounding and cell culture, on the transcriptional reactivation of seven long terminal repeat retrotransposons (LTRs) of barley (Hordeum vulgare) genome, were investigated. These LTRs included two Copia-type (Bare1 and Maximus); and five Gypsy-type (Erika, Jeli, Sabrina, Sukkula1 and Sukkula3) LTRs. RT-qPCR analyses revealed that Erika1 LTR was highly reactivated under heat, drought, and wounding with 28.1, 9.9 and 9.4 fold increments, respectively. Sabrina LTR was 6.2 fold reactivated under cell culture. Bare1 LTR was reactivated by drought (4.1 fold) and cell culture (3.4 fold). Transcription activity of Jeli LTR was increased by 3.4 fold under cell culture. Sukkula1, Sukkula3 and Maximus LTRs were slightly reactivated under drought, wounding and cell culture. These changes in the reactivation pattern of LTRs provide fingerprints for tracking the molecular changes occurred in barley genome upon exposure to environmental stresses, which might result in gain or loss of yield. Such sensitive LTR expression profiles underline one of the important role of LTR genetics in agriculture.

Keywords: LTR retrotransposons; RT-qPCR, environmental stresses; barley (Hordeum vulgare), TREP

List of Abbreviations: LARD-LTRs (large retrotransposons derivatives), LTRs (long terminal repeat retrotransposons), RT-qPCR (reverse transcription–quantitative polymerase chain reaction), TREP (triticeae repeat sequence database server).

1. Introduction

Transposable elements (TEs) are major genetic elements of the eukaryotic genomes (Jurka et al., 2007; Mansour, 2007). In plant, TEs comprise about 15% (Arabidopsis thaliana), 50-80% (most grass genomes), or more (some Liliaceae species) of the nuclear genome (Sabot and Schulman, 2006). In human, TEs comprise nearly half (42%) of the nuclear genome (IHGSC, 2001).

Next to DNA transposons, retrotransposons (RTs) are the main groups of TEs. The latter move (‘or jump’) by copy-and-paste way of life cycles through molecular steps of transcription, reverse transcription and integration of the cDNA copies back into host genome (Alisch et al., 2005; Grandbastien et al., 2005; Brady et al., 2007; Saito et al., 2008; Geuking et al., 2009). LTR retrotransposons (long terminal repeats or LTRs) are the most abundant class of RTs in plant (Wicker et al., 2005). On average, LTRs comprise 60% of the genomes of maize, wheat and barley (Vicient et al., 1999; Myers et al., 2001; Wicker et al., 2001). LTRs are the main source of insertional inactivation mutagenesis (Zedek et al., 2010), which results in ‘genomic shock’ (McClintock, 1984), polyploidy (Vitte and Panaud, 2005), genome remodeling (Wicker et al., 2005), changes in gene expression (Sargent et al., 2008), and genome size enlargement. The latter can occur within one plant generation (Bennetzen, 2002), and might be reversible resulting in genome fluctuation by expansion and contraction (Shirasu et al., 2000; Bennetzen, 2002).

Experiments confirmed the elevated transcriptional activities (reactivation) of LTRs induced by exogenous environmental stresses of chilling, salt, light, infections, nitrate limitations, mechanical damage, and also by in vitro regeneration. These activities result in the development of doubled haploids and hybridization (Grandbastien et al., 2005; Nellaker et al., 2006; Stribinskis and Ramos, 2006; Salazar et al., 2007; Sharma et al., 2008; Maumus et al., 2009; Woodrow et al., 2010). As a result of plant defense mechanisms, LTRs can be silenced epigenetically by hypermethylation (Kumar and Bennetzen, 1999).

In the present study, the reactivation of seven barley LTRs; two Copia-type (Bare1 and Maximus) and five Gypsy-type (Erika, Jeli, Sabrina, Sukkula1
and Sukkula) induced by three abiotic stresses (heat, drought and wounding) and cell culture was successfully detected via RT-qPCR. Utilization of these retrotransposons can provide an indirect estimation of transcriptional patterns of these repetitive elements and play a major role in improving the annotation of genomic sequences used to search EST databases.

2. Materials and Methods

Plant materials

Barley (Hordeum vulgare; 2n=2x=14 chromosomes; ~ 5500 MB genome size) seeds of the cultivar Giza 2000 were germinated and grown in the greenhouse under controlled growth conditions.

Environmental stresses

For mild heat stress, five-leaf-stage seedlings were grown for 3 days under high temperature (37°C) as recommended for cereals (Yildiz and Terzi, 2008). For drought stress, seedlings were grown for 27 days with minimum watering to keep them at the wilting stage. Eight replicated pots were used in which two seeds were planted in each plastic pot of 5130 cm³ containing 4000 g of dry soil in the greenhouse. Mass water content (kg/kg) corresponding to soil matric potentials of ≈−20 and −500 kPa were determined from the retention curve to simulate well-watered and severe water deficit treatments, respectively. It was experimentally determined that addition of 500 and 100 ml of water every other day was required to maintain the desired soil matric potentials for plants up to 8–10 weeks. Soil water status thus presumably became progressively slightly ‘drier’ (lower matric potential) than the target levels as plants grew further and used more soil water. For wounding stress, seedlings were cut into pieces. For cell culture condition, cell suspension culture was applied for 27 days in liquid, aseptic nutritive media according to Mansour et al. (2008) following Bittsánszky et al. (2006). Statistical analyses for different experiments were performed following the procedure outlined by Gomez and Gomez (1984).

RNA extraction and synthesis of first-strand cDNA

Barley leaves (0.1 g) were used to isolate total RNA with Trizol (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions. In 200 µl, 1x DNase I buffer (10 mM Tris-HCl, pH 7.5; 2.5 mM MgCl₂, 0.1 mM CaCl₂, 20 U DNase I [Fermentas International Inc., Burlington, Canada], 5 mM DTT, 100 U RiboLock™ Ribonuclease Inhibitor) and the RNA samples (20 µl each) were applied and incubated at 37°C for 60 min. Total RNA, in 1x TE, was incubated at 70°C for 5 min and chilled on ice. The reaction mixture (50 µl), composed of 1x reaction buffer for reverse transcription (50 mM Tris-HCl, pH 8.3, at 25°C), 50 mM KCl, 4 mM MgCl₂, 10 mM DTT, 10 mg of total RNA, 50 U (RiboLocka) ribonuclease inhibitor, 5µM of random primers, 1 mM dNTPs, was incubated at 5°C for 10 min and chilled on ice. Then, 1000 U RevertAida, M-MuLV reverse transcriptase (Fermentas International Inc., Burlington, Canada) were added. Then, the reaction mixture was incubated at 4°C for 60 min. Finally, 150 µl TE was added and solution was stored in -20°C until use (Mansour et al., 2008).

RT-qPCR

The QIAGEN OneStep RT-PCR kit was used according to Gyulai et al. (2005) and Bittsánszky et al. (2006). The PCR reactions mixture (25 µl) contained 3 µl cDNA, 1x PCR buffer (10 mM Tris-HCl, pH 8.8 at 25°C), 2.5 mM MgCl₂, 50 mM KCl, 0.1 % Triton X-100, 300 nM of each primer pair (Table 1), 0.2 mM dNTPs and 1 U DNase II DNA polymerase. PCR (PTC-225 DNA Engine Tetrad cycler, MJ Research, USA) cycles consisted of: 95°C for 2 min; 30 cycles of 95°C/15 sec, 52°C, 56°C or 60°C for 1 min; and 72°C for 2 min, with a final extension step at 72°C for 10 min. For gel electrophoresis (80V/3 h), samples (10 µl) were mixed in 2x loading buffer and loaded to 1.7% agarose gel (1x STBE). Bands were detected by ethidium bromide staining. The expression levels of LTRs were determined by densitometer program of GelAnalyzer (http://www.GelAnalyzer.com/). Constitutively expressed α-tubulin gene was used as a control according to Suprunova et al. (2007).

LTR-specific primer sequences

The sequences of retrotransposon families were collected from the Triticeae repeat sequence database server (TREP) (http://wheat.pw.usda.gov/ITMIRepeats/). The server provides sequence entries for the Copia-type LTRs of Bare1 (70 entries) and Maximus (9 entries), and the Gypsy-type LTRs of Erika (9 entries), Jeli (14 entries), Sabrina (61 entries), Sukkula1 and Sukkula3 (7 entries). Downloaded TREP sequences were aligned for determining consensus sequences by MULTALIN© server (Combet et al., 2000) and FastPCR© program (Kalender et al., 2009). For the analyses of inter specific sequence diversity and phylogeny, LTRs were analyzed in silico by BioEdit (Hall, 1999) and MEGA4 (Tamura et al., 2007) programs.
Table 1. Nucleotide sequences of primer pairs used for RT-qPCR analyses of seven retrotransposons (LRTs) as well as the constitutively expressed α-tubulin gene used as a control (Suprunova et al., 2007). Amplified fragment sizes in base pairs (bp) are indicated.

<table>
<thead>
<tr>
<th>LRTs</th>
<th>Primer sequences</th>
<th>LRTs</th>
<th>Primer sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-tubulin (400 bp)</td>
<td>F: tcctatgatccaaggtgta R: ctgtagcagctgggggtgc</td>
<td>Jeli (380 bp)</td>
<td>F: accatacagctactacagcag R: cgctgcttagctttcgcct</td>
</tr>
<tr>
<td>Bare1 (198 bp)</td>
<td>F: agcagccctcgggtctcag R: cggacacatgcctcagaggtttttctc</td>
<td>Sabrina (326 bp)</td>
<td>F: tttgggctttacggtcaggttgag R: cttgtaattacttggctag</td>
</tr>
<tr>
<td>Maximus (422 bp)</td>
<td>F: tgtgggttagttcagacag R: acgggggttcctggagctgaagcggtc</td>
<td>Sukkula1 (294 bp)</td>
<td>F: Tctcagagttggttcccttc R: gtcagacataacccacaggggc</td>
</tr>
</tbody>
</table>

3. Results and Discussion

In silico sequence analyses

During primer design, two samples of LTR retrotransposon families of available Copia-type (all Maximus) and Gypsy-type (all Jeli) were studied in silico based on full TREP data. Sequences showed distinctive DNA compositions with higher GC content in Jeli LTRs and higher AT content in Maximus LTRs with a single exception (Maximus TREP1711) (Figure 1). This obviously indicates independent origin of the two LTR families studied (Wicker et al., 2007).

Phylogeny of Hordeum LTRs (Figure 2) showed high level of sequence diversity, however, with consensus stretches useful for primer design (Table 1). Sequence diversities also indicated that the active life cycles of LTRs, as new sequence combinations of LTRs, are always generated during their life cycles due to the lack of proof-reading activity of the RNA-dependent DNA polymerase (RdDpol), the reverse transcriptase (RT), which amplify the double-stranded cDNA copy from the transcribed single-stranded RNA transcriptomes of the LTRs (Wilhelm and Wilhelm, 2001).

RT-qPCR analyses of the reactivation of LTRs

Copia-type LTRs

The Copia-type Bare1 LTR family was the first highly abundant (1.66±0.6 x 10^5 copies) full-length retrotransposon described in barley (Hordeum vulgare), which accounts for approximately 3% of barley genome (Chang and Schulman, 2008). It actively transcribes, translates and assembles into virus-like particles. It is involved in genomic diversification within the genus. The Bare1 was also found active in genome remodeling (Kalander et al., 2000; Shirasu et al., 2000). Our results showed that Bare1 LTR retrotransposon was reactivated by drought (4.1 fold increment) and cell culture (3.4 fold), but not by heat or wounding (Figure 3, Table 2). The Maximus LTRs of cereal genomes were found to be slightly reactivated in our study by heat wounding (1.5 fold increment) and cell culture (1.9 fold) (Figure 3, Table 2).

Gypsy-type LTRs

The internal domain sequence of Erika1 is 63% identical to the Gypsy-type Bagy-1 retrotransposon of barley (NCBI Y14573) (Wicker et al., 2007), and showed 69% identity to Sukkula LTRs with a poor match at the 5’ end. A maize (Zea mays) gypsy/Ty-3 LTR was detected recently in common millet (Panicum miliaceum) by AFLP analysis (Gyulai et al., 2011). The transcription activity of Erika1 LTR was elevated by stresses of heat (28.1 fold increment), drought (19.9 fold) and wounding (9.4 fold), however, the stress during cell culture showed no influence on the transcription activity (Figure 3, Table 2). The Jeli LTR, described first in hexaploid wheat (Triticum aestivum) genome, provided useful multiple genetic markers for common wheat (Melnikova et al., 2011). Our results showed that Jeli LTRs in barley has no activation with most stresses studied, except with a slight reactivation during cell culture with 3.4 fold increment (Figure 3, Table 2). The Sabrina LTR, described as an active retrotransposon in common grasses (Todorovska, 2007), showed reactivation capacity by heat (1.4 fold) and during cell culture with 6.2 fold transcriptional increments (Figure 3, Table 2). Sukkula LTRs, described as Solo-LTR elements, are the most highly expressed elements in the cultivated barley (Shirasu et al., 2000), however, they lack the coding sequences making it the main type of LARD-LTRs (large retrotransposons derivatives). Both Sukkula1 and Sukkula3 were transcriptionally slightly reactivated during cell culture (1.3 and 1.7 fold increment, respectively) and not by heat and wounding stresses. Nevertheless, Sukkula3 was slightly reactivated by drought (1.6 fold increment) stress (Figure 3, Table 2).

Generally speaking, our results showed different retrotransposon responses to different environmental stresses (data not shown) in accordance with Beguiristain et al. (2001), Salazar et al. (2007) and Chang and Schulman (2008). Tnt1A element of tobacco was reactivated by wounding, biotic elicitors and pathogen attacks of fungal extracts (Melayah et
These reactivations seemed to be mainly caused by the Tnt1A promoter that has the potential to be activated by various biotic and abiotic stimuli (Grandbastien et al., 2005; 2007). These stimuli were specifically repressed in tobacco when the LTR promoter was replaced in a heterologous position (Grandbastien, 1998).

The sequences of LTR retrotransposons contain environmental stress responsive elements (Niinemets and Valladares, 2004). The cis-regulatory elements, similar to those of plant stress responsive genes, may be involved in binding active retrotransposons to similar defense-induced transcription factors (Casacuberta and Santiago, 2003; Dunn et al., 2006). Also, there are numerous stress inductive gene promoters that share strong sequence similarities with LTRs (Casacuberta and Santiago, 2003; Dunn et al., 2006). The TLC1.1 retrotransposon was reactivated by multiple stress-related signaling molecules of salicylic acid (SA), abscisic acid (ABA), methyl jasmonate (MeJA), hydrogen peroxide (H_2O_2) and the synthetic auxin 2,4-D (Salazar et al., 2007).

In conclusion, our results show that the studied LTR retrotransposon families responded to environmental stresses with different rates of expression. RT-qPCR analyses revealed that Erika1 LTR was highly reactivated under heat, drought, and wounding with 28.1, 9.9, and 9.4 fold increment, respectively. Sabrina LTR was reactivated under cell culture with 6.2 fold increment. Bare1 LTR was reactivated by drought (4.1 fold) and under cell culture (3.4 fold). Transcription activity of Jeli LTR was increased by 3.4 fold under cell culture. Sukkula1, Sukkula3 and Maximus LTRs were reactivated slightly under drought, wounding and cell culture. No explanation can be given for this phenomenon. Changes in the studied transcriptional activities of LTRs provide sensitive molecular fingerprints for tracking the molecular changes occurring in the barley genome exposed to environmental stresses (Koornneef et al., 2004). This indicates that global warming might have an influence in the near future. These stress responsive LTR reactivations might result in gain or loss of yield in economically important crop plants like barley, which underline the important role of LTR genetics in agriculture.

| Table 2. Expression levels of the seven LTR retrotransposons of barley (Hordeum vulgare) exposed to four stresses as compared to the constitutively expressed α-tubulin gene (control). Results of the RT-qPCR were calculated by GelAnalyzer densitometer program on gel photos (see Figure 3). |
|---|----------|----------|----------|----------|----------|
| LTRs | Heat | Drought | Wounding | Cell culture |
| α-tubulin (control) | 1.0 | 1.0 | 1.0 | 1.0 |
| Bare1 | 1.0 | 4.1 | 1.0 | 3.4 |
| Maximus | 1.0 | 1.0 | 1.5 | 1.9 |
| Erika1 | 58.1 | 19.9 | 9.4 | 1.0 |
| Jeli | 1.0 | 1.0 | 1.0 | 3.4 |
| Sabrina | 14.4 | 1.0 | 1.0 | 6.2 |
| Sukkula1 | 1.0 | 1.0 | 1.0 | 1.3 |
| Sukkula3 | 1.0 | 1.6 | 1.0 | 1.7 |

Figure 1. Differences between percentages of GC and AT nucleotide contents of Copia-type (all Maximus available) and Gypsy-type (all Jeli available) LTR retrotransposons. Full-length TREP sequences (indicated) were analyzed by BioEdit (Hall, 1999).
Figure 2. Bootstrap consensus dendrogram derived from the nucleotide sequences of LTR retrotransposons of *Hordeum* genome. Full-length TREP sequences of *Copia*-type (*Bare1* and *Maximus*) and *Gypsy*-type (*Erika*, *Jeli*, *Sabrina* and *Sukkula*) LTR retrotransposons were compared. Full-length TREP sequences of *Bare1* (six of the 65 LTRs available), *Maximus* (9 LTRs), *Erika* (1 LTR), *Jeli* (15 LTRs), *Sabrina* (23 LTRs) and *Sukkula* (7 LTRs) were aligned (BioEdit; Hall, 1999) and edited (MEGA4; Tamura et al., 2007). LTRs of the same families are indicated with different colored symbols. Bootstrap supporting values from 1000 replicates are provided at node.
Figure 3. RT-qPCR analyses of the transcriptional reactivations of seven LTR retrotransposons of barley (*Hordeum vulgare*) genome. Two *Copia*-type (*Bare1* and *Maximus*); and five *Gypsy*-type (*Erika*, *Jeli*, *Sabrina*, *Sukkula1* and *Sukkula3*) LTR retrotransposons were investigated under stresses of heat, drought, wounding, and cell culture. For control, the level of the constitutively expressed *α-tubulin* gene was applied. Amplified fragment sizes are indicated in *Table 1*. *Mw* (molecular weight markers), *Nt* (Not treated), *Tr* (treated samples).

Acknowledgments

Authors wish to thank Dr. Luther Waters (Auburn University, AL, USA) for the comments on the manuscript. This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant no. (1432-1433/HCi). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Corresponding Author

A. Bahieldin

1Genomics and Biotechnology Section, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia

Bahieldin55@gmail.com
References

