A Modified Gauss - Seidel Method for M - Matrices

Nasser Mikaeilvand ${ }^{1}$ and Zahra Lorkojori ${ }^{2}$
${ }^{1}$ Department of Mathematics, Ardabil branch, Islamic Azad University, Ardabil, Iran.
${ }^{2}$ Young Researchers Club, Ardabil branch, Islamic Azad University, Ardabil, Iran.
Corresponding author: Nasser Mikaeilvand, email: Mikaeilvand@IauArdabil.ac.ir

Abstract

A. D. Gunawardena et al. proposed the modified Gauss-Seidel (MGS) method for solving the linear system with the preconditioned $=I+S$. The preconditioning Effect is not observed on the nth row. In the present paper, we suggest a new precondition. We get the convergence and comparison theorems for the proposed method. Numerical examples also given.

[Nasser Mikaeilvand and Zahra Lorkojori. A Modified Gauss - Seidel Method for M - Matrices. Life Sci J 2012;9(4):4433-4437]. (ISSN: 1097-8135). http://www.lifesciencesite.com. 668

Keywords: M-Matrices, Preconditioned system, Gauss-Seidel method

1- Introduction:

We consider the following preconditioned linear system.
$P A X=P b$,
where $\mathrm{A}=(a i, j)_{n \times n \in R^{n \times n}}$ is a known non singular M-matrix, $P \in R^{n \times n}$, called the preconditioned, is non singular, $b \in R(A)$ is known and $X \in R^{n \times 1}$ is unknown, (A) is the range of A. throughout this paper, without loss of generality, we always assume that the coefficient matrix A has a splitting of the form $A=I-L-U$, where is the identity matrix, -L and -U are strictly lower triangular and strictly upper triangular parts of A, respectively.

To effectively solve the preconditioned linear system (1.1), a variety of preconditioners have been proposed by several authors, see [$1-6$] and the references there in. Since some preconditioned are constructed only from a part of upper triangular part of A, the preconditioning effect is not observed on the last row of matrix A. For example, the preconditioned $P_{s}=I+S$ presented in [1] and $P_{S_{\max }}=I+S_{\max }$ in [7] are formed respectively by
$S=\left(s_{i, j}\right)=\left\{\begin{array}{c}-a_{i, i+1} i=1,2, \ldots, n-1 ; \\ o, \quad \text { Other wise }\end{array}\right.$
and
$S_{\text {max }}=\left(S_{i, j}^{m}\right)=\left\{\begin{array}{cc}-a_{i}, & k_{i}, \\ o, & \text { Other wise },\end{array}\right.$
$K_{i}=\min \left\{j\left|\max _{j}\right| a_{i, j} \mid, i<n\right\}$
Motivated by their results, in this paper, we propose the following preconditioned:
$P_{m}=I+S+R_{\text {max }}$
where
$\left(R_{\text {max }}\right)_{i, j}=\left\{\begin{array}{lr}-a_{n}, k_{n}, & i=n, j=K_{n}, \\ 0, & \text { Other Wise }\end{array}\right.$
With $\quad K_{n}=\min \left\{j| | a_{n, j} \mid=\max \left\{\left|a_{n, l}\right|, l=\right.\right.$ $1, \ldots, n-1\}\}$

For the preconditioned (1.2), the preconditioned matrix
$A_{m}=\left(I+S+R_{\max }\right) A$
Can be split as
$A_{m}=M_{m}-N_{m}$

$$
\begin{aligned}
& =\left(I-D-L-E+R_{\max }-\dot{D}-E ́\right)- \\
& (U-S+S U)
\end{aligned}
$$

where D and E are respectively the diagonal, strictly lower triangular parts of SL, while \dot{D} and $E ́$ are the diagonal, strictly lower triangular, the MGS iterative matrix is $T_{m}=M_{m}^{-1} N_{m}$.

2. Preliminaries

For the convenience of the readers, we first give some of the notations, definitions and lemmas which will be used in what follows.

For $A=\left(a_{i, j}\right), B=\left(b_{i, j}\right) \in R^{n \times n}$, we write $A \geq B$ if $a_{i, j} \geq b_{i, j}$ holds for all $i, j=$ $1,2, \ldots, n . A \geq 0$, called nonnegative, if $a_{i, j} \geq 0$ for all $i, j=1,2, \ldots, n$, where O is a $n \times n$ zero matrix. For the vectors $a, b \in R^{n \times 1}, a \geq b$ and $a \geq o$ can be defined in the similar manner.

Definition 2.1([9]). A matrix A is a L-matrix if $a_{i, i}>0, i=1, \ldots, n$ and $a_{i, j} \leq 0$ for all $i, j=$ $1, \ldots, n . i \neq j$. A nonsingular L-matrix A is a nonsingular M-matrix if $A^{-1} \geq 0$.

Lemma 2.1 ([10]). Let A be a nonnegative nonzero matrix. Then
(a) $\rho(A)$, the spectral radius of A , is an eigen value;
(b)A has a nonnegative eigenvector corresponding to $\rho(A)$;
(c) $\rho(A)$ is a simple eigen value of A ;
(d) $\rho(A)$ increases when any entry of A increases.

Definition 2.2. Let A be a real matrix. Then, $A=M-N$ is called a splitting of A if M is a nonsingular matrix. The splitting is called
(a)regular if $M^{-1} \geq 0$ and $N \geq 0[10]$;
(b)weak regular if $M^{-1} \geq 0$ and $M^{-1} N \geq 0[11] ;$
(c)nonnegative if $M^{-1} N \geq 0$ [12].
(d) M -splitting if M is a nonsingular M -,matrix and $N \geq 0$ [13].

Definition 2.3 ([8)].We call $A=M-N$ the Gauss-Seidel splitting of A, if $M=(I-L)$ is nonsingular and $N=V$. In addition, the splitting is called
(a)Gauss-Seidel convergent if $\rho\left(M^{-1} N\right)<1$;
(b)Gauss-Seidel regular if $M^{-1}=(I-L)^{-1} \geq 0$ and $N=U \geq 0$.

Lemma2.2([14)]. Let $A=M-N \quad \mathrm{Be}$ an M Splitting Of A. Then $\rho\left(M^{-1} N\right)<1$ if and if A is a nonsingular M-matrix.

Lemma2.3([15]). Let A and B be $n \times n$ matrices. Then $A B$ and $B A$ have the same eigenvalues, counting multiplicity.

Lemma2.4([16)].Let A be a nonsingular M matrix, and let $A=M_{1}-N_{1}=M_{2}-N_{2}$ be two convergent splitting, the first one weak regular and the second one regular. If $M_{1}^{-1} \geq M_{2}^{-1}$, then $\rho\left(M_{1}^{-1} N_{1} \leq \rho\left(M_{2}^{-1} N_{2}\right)<1\right.$.

3. Convergence And Comparison Theorems

We begin this section with a lemma given in [7].
For the preconditioned $P_{S}=I+S$, the Preconditioned Matrix $A_{S}=(I+S) A$ can be written as
$A_{S}=M_{S}-N_{S}=(I-D-L-E)-(U-S+$ $S U$).

In which D and E are defined as in section1. If $a_{i, i+1} a_{i+1, i} \neq 1(i=1,2, \ldots, n-1)$, then the MGS iterative matrix T_{S} for A_{s} can be defined by $T_{S}=M_{S}^{-1} N_{S}=(I-D-L-E)^{-1}(U-S+S U)$ as $(I-D-L-E)^{-1}$ exists. In this case there is the following result:

Lemma 3.1 ([7]). Let $A=I-L-U$ be a nonsingular M-matrix. Assume that $O \leq$ $a_{i, i+1} a_{i+1, i}<1,1 \leq i \leq n-1$, then $A_{S}=M_{S}-N_{S}$ is regular and Gauss-Seidel convergent.

Theorem 3.2. Let A be a nonsingular M-matrix. Assume that $O \leq a_{i, i+1} a_{i+1, i}<1,1 \leq i \leq n-1$ and $\quad O \leq a_{n, k_{j}} a_{k_{j}, n}<1, k_{j}=1, \ldots, n-1$, then
$A_{m}=M_{m}-N_{m} \quad$ regular and Gauss-Seidel convergent splitting.

Proof. We observe that when $O \leq a_{i, i+1} a_{i+1, i}<$ $1,1 \leq i \leq n-1 \quad$ and $\quad O \leq a_{n, k_{j}} a_{k_{j}, n}<1, k_{j}=$ $1, \ldots, n-1$, the diagonal elements of A_{m} are positive and M_{m}^{-1} exists. It is known that (see [11]) an L-matrix A is a non singular M-matrix if and only if there exists a positive vector y such that $>o$. By taking such, the fact that $I+S+R_{\max } \geq$ $0 \quad$ implies $\quad A_{m} y=\left(I+S+R_{\max }\right) A_{y}>0$. Consequently, the L-matrix A_{m} is a nonsingular Mmatrix, which means $A_{m}^{-1} \geq 0$.

We note that $L-R_{\max }+E+E \geq 0 \quad$ since $L \geq R_{\text {max }} \geq 0$.

When $\quad 0 \leq a_{i, i+1} a_{i+1, i}<1,1 \leq i \leq n-1 \quad$ and $0 \leq a_{n, k_{j}} a_{k_{j}, n}<1, k_{j}=1, \ldots, n-1$, we have $D+\dot{D}<I$, so that $(I-D-D) \geq 0$. Hence,
$M_{m}^{-1}=\left[(I-D-D)-\left(L-R_{\max }+E+E\right)\right]$
$=\left[I-(I-D-D)^{-1}\left(L-R_{\max }+E+\right.\right.$
É) $]^{-1}(I-D-D)^{-1}$
$=\left[I+(I-D-D)^{-1}\left(L-R_{\text {max }}+E+E ́\right)+\right.$
$\left[(I-D-\dot{D})^{-1}\left(L-R_{\max }+E+E ́\right)\right]^{2}+\cdots$
$+\left[(I-D-\dot{D})^{-1}\left(L-R_{\max }+E+\dot{E}\right)^{n-1}\right\}(I-$ $D-D)^{-1}$
≥ 0
On the other hand, it is to see that $N_{m}=U-S+$ $S U \geq 0$ since $U \geq S$ and $S U \geq 0$. Therefore, $A_{m}=M_{m}-N_{m}$ is a regular and Gauss-Seidel convergent splitting by definition 2.3 and lemma2.2.

For the splitting $A=I-L-U$ of matrix A, the iteration matrix of the classical Gauss-Seidel method for A is $T=(I-L)^{-1} U$. Comparing $\rho(T)$ with $\rho\left(T_{m}\right)$, the spectral radius of the MGS with the preconditioned $P_{m}=I+S+R_{\max }$, we have the following comparison theorem:

Theorem 3.3. Let A be a nonsingular M-matrix. Then under the assumptions of theorem3.2, we have $\rho\left(T_{m}\right) \leq \rho(T)<1$.

Proof. For $M_{m}=I-D-L-E+R_{\max }-D-E ́$ and $N_{m}=U-S+S U$, by theorem 3.2, we know that $A_{m}=P_{m} A=M_{m}-N_{m}$ is a Gauss-Seidel convergent splitting. Since A is a nonsingular, the classic Gauss-Seidel splitting $A=(I-L)-U$ of A is clearly regular and convergent.

To compare $\rho\left(T_{m}\right)$ with $\rho(T)$, we consider the following splitting of A :
$A=\left(I+S+R_{\max }\right)^{-1} M_{m}-\left(I+S+R_{\max }\right)^{-1} N_{m}$
If we take $M_{1}=\left(I+S+R_{\max }\right)^{-1} M_{m}$ and $N_{1}=\left(I+S+R_{\max }\right)^{-1} N_{m}$, then $\rho\left(M_{1}^{-1} N_{1}\right)<1$ since $M_{1}^{-1} N_{m}=M_{1}^{-1} N_{1}$.

Also note that
$M_{1}^{-1}=\left(I-D-L-E+R_{\max }-D-E ́\right)^{-1}(I+$ $\left.S+R_{\text {max }}\right)$
$\geq\left(I-D-L-E+R_{\max }-D=E ́\right)^{-1}$
$=\left[I-(I-D-\dot{D})^{-1}\left(L-R_{\max }+E+E\right)\right]^{-1}(I-$ $D-D)^{-1}$
$\geq\left[I-(I-D-\dot{D})^{-1}\left(L-R_{\max }+E+\dot{E}\right)\right]^{-1}$
$\geq(I-L)^{-1}$,
It follows from lemma 2.4 that $\rho\left(M_{1}^{-1} N_{1}\right) \leq$ $\rho\left(M^{-1} N\right)<1$.

Hence $\rho\left(M_{m}^{-1} N_{m}\right) \leq \rho\left(M^{-1} N\right)<1$, i.e., $\rho\left(T_{m}\right) \leq$ $\rho(T)<1$.

Next, we give a comparison theorem between the MGS methods with the preconditioners P_{m} and P_{s} respectively.

Theorem 3.4. Let A be a nonsingular M-matrix. Then under the assumptions of theorem 3.2 and $a_{k_{n}} j \leq a_{k_{n}}, n a_{n}, j, 1 \leq n-1$, we have $\rho\left(T_{m}\right) \leq$ $\rho\left(T_{s}\right)<1$.

Proof. For the matrices M_{s}, M_{m}, N_{s} and N_{m} in the splitting of matrices $P_{s} A=M_{s}-N_{s}$ and $P_{m} A=$ $M_{m}-N_{m}$, they can be expressed in the partitioned forms as follows:
$M_{s}=I-D-L-E=\left(\begin{array}{c|c}\widehat{M} & 0 \\ \hline U^{T} & 1\end{array}\right)$,
$M_{m}=I-D-L-E+R_{\max }-D-E ́$,
$M_{m}=M_{s}+R_{\max } \times A=\left(\begin{array}{c|c}\widehat{M} & 0 \\ \hline V^{T} & U_{n}\end{array}\right)$,
$N_{m}=N_{s}=\left(\begin{array}{c|c}\widehat{N} & W \\ 0 & 0\end{array}\right)$,
where
$\widehat{M}=\left(\widehat{m}_{i, j}\right), \widehat{m}_{i, j}=$
$\left\{\begin{array}{c}0,1 \leq i \leq j \leq n-1 \\ 1-a_{i, i+1} a_{i+1, i}, i=j, \\ a_{i, j}-a_{i, i+1} a_{i+1, j}, j<i \leq n-1,\end{array}\right.$
$U^{T}=\left(a_{n, 1}, \ldots, a_{n, n-1}\right)$,
$V^{T}=\left(V_{1}, \ldots, V_{n-1}\right), V_{j}=a_{n, j}-a_{n, k n} a_{k n, j}(1 \leq$
$j \leq n-1$),
$V_{n}=1-a_{n, k n} a_{k n, n}$,
$W=\left(W_{1}, \ldots, W_{n-1}\right)^{T}, W_{i}=$
$-a_{i, n}+a_{i, i+1} a_{i+1, n}(1 \leq I \leq n-1)$,
and $\widehat{N} \geq 0$ is an $(n-1) \times(n-1)$ strictly upper triangular matrix.

Direct computation yields
$M_{s}^{-1}=\left(\begin{array}{c|c}\widehat{M}^{-1} & 0 \\ \hline U^{T} \widehat{M}^{-1} & 1\end{array}\right)$ and
$M_{m}^{-1}=\left(\begin{array}{c|c}\widehat{M}^{-1} & 0 \\ \hline-V_{n}^{-1} V^{T} \widehat{M}^{-1} & V_{n}^{-1}\end{array}\right)$.
Therefore,
$N_{S} M_{s}^{-1}=\left(\begin{array}{c|c}\widehat{T}_{s} & W \\ \hline 0 & 0\end{array}\right) \geq 0$
and
$N_{m} M_{m}^{-1}=\left(\begin{array}{c|c}\bar{T}_{m} & U_{n}^{-1} W \\ \hline 0 & 0\end{array}\right) \geq 0$
where $\widehat{T}_{s}=\widehat{N} \widehat{M}^{-1}-W u^{T} \widehat{M}^{-1}$ and $\bar{T}_{m}=\widehat{N} \widehat{M}^{-1}-$ $W V_{n}^{-1} V^{T} \widehat{M}^{-1}$.

Obviously, $\rho\left(N_{s} M_{s}^{-1}\right)=\rho\left(\widehat{T}_{s}\right)$ and $\rho\left(N_{m} M_{m}^{-1}\right)=$ $\rho\left(\bar{T}_{m}\right)$.

By simple computation, we know $\bar{T}_{m} \leq \hat{T}_{s}$ that under the assumption $a_{k n, j} \leq a_{k n, n} a_{n, j}, 1 \leq j \leq$ $n-1$. Hence by lemma 2.1, we have
$\rho\left(N_{m} M_{m}^{-1}\right)=\rho\left(\bar{T}_{m}\right) \leq \rho\left(\widehat{T}_{s}\right)=\rho\left(N_{s} M_{s}^{-1}\right)$

Therefore, by lemma 2.3, we immediately know that which means that $\rho\left(T_{m}\right) \leq \rho\left(T_{s}\right)$.

4. Numerical Examples

In this part, we give some examples to illustrate the theory in section3.

Example 4.1.Let us consider the matrix A of (1.1), given by
$A=\left(\begin{array}{ccccc}1 & -0.2 & & & \\ -0.3 & -0.1 & -0.2 \\ -0.1 & 1 & -0.1 & -0.3 & -0.1 \\ -0.2 & -0.1 & 1 & -0.1 & -0.2 \\ -0.2 & -0.1 & -0.1 & 1 & -0.3 \\ -0.1 & -0.2 & -0.2 & -0.1 & 1\end{array}\right)$.
We have $\rho\left(T_{m}\right)=0.3114$ and $\rho\left(T_{s}\right)=0.3384$.
Clearly, $\rho\left(T_{m}\right)<\rho\left(T_{s}\right)$ holds.
Example 4.2. Let the coefficient matrix A of (1.1) be given by
$A=\left(\begin{array}{ccc}1 & -0.5 & -0.5 \\ -0.3 & 1 & -0.6 \\ -0.3 & -0.3 & 1\end{array}\right)$.
We have $\rho\left(T_{m}\right)=0.29167<\rho\left(T_{s}\right)=0.44763$

References:

[1] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979.
[2] A. D. Gunawardena, S. K. Jain, L. S. Nyder, Modified iterative methods for consistent linear system, Linear Algebra Appl. 154-156(1991)123-143.
[3] T. Kohno, M. Kotakemori, H. Niki, Improving the modified Gauss-Seidel method for Z-matirices, Linear Algebra Appl. 267 (1997)113-123.
[4] H. Kotakemori, K. Haradu, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioned ($\mathrm{I}+\mathrm{S}_{\text {max }}$), J. Comput. Appl. Math. 145 (2002)373-378.
[5] H. Kotakemori, H. Niki, N. Okamoto, Accelerated iterative method for Z-matrices, J. Comput. Appl. Math.75(1996)87-97.
[6] W. Li, W. W. Sun, Modified Gauss-Seidel type methods and Jacobi type methods for Z-matrices, Linear Algebra Appl. 317(2000)227-240.
[7] W. Li, A note on the preconditioned GaussSeidel (GS) method for linear system, J. Comput. Appl. Math. 182 (2005)81-90.
[8] J. P. Milaszewicz, Impriving Jacobi and GaussSeidel iterations, Linear Algebra Appl.93(1987)161-170.
[9]H. Niki, K. Harada, M. Morimoto, M. Sakakihara, The survey of preconditioners used for accelerating the rate of convergence in the GaussSeidel method, J. Comput. Appl. Math. 164 165 (2004)587-600.
[10] H. Niki, T. Kohno, M. Morimoto, The preconditioned Gauss-Seidel method faster than the SOR method, J. Comput. Appl. Math. 219(2008)59-71.
[11] H. Schneider, Theorems on M-splitting of a singular M-matrix which depend on graph structure, Linear Algebra Appl. 58(1984)407 424.
[12] Y. Z. Song, Comparisons of non negative splitting of matrices, Linear Algebra Appl.154 -156(1991)433-455.
[13] R. S. Varga, Matrix iterative analysis, Prentice-Hall, Englewood Cliffs, NJ, 1981.
[14] Z. I. Wozniki, Nonnegative splitting theory, Japan J. Industrial Appl. Math. 11(1994)289 342.
[15] D. M. Young, Iterative solution of large linear systems, Academic Press, New York,1971.
[16] F. Zhang, Matrix theory, Springer, 1999.
[17] Bing Zheng, S. X. Miao, Two new modified Gauss-Seidel methods for linear system with mMatrices, J. Comput. Appl. Math. Vol. 233 Issue 4, (2009) 922-930.

