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 1. Introduction 

 Asian options are a variety of so-called 
exotic financial derivatives, where the contract 
specifies a future payoff depending on the average of 
stock price or index over a specified period in the 
future. These options can be more useful than 
ordinary or vanilla options, particularly in 
circumstances when an investor is more interested in 
average or regular exposure to an asset over a period 
rather than exposure on a particular data. There are 
many varieties for Asian option, for example: Fixed 
strike Asian options whose payoff is the difference 
between the average price and a fixed strike price, 
Floating strike options whose payoff is the difference 
between the final stock price and the average stock 
price and American versions of the Asian option, 
which allow for early exercise (opposed to the 
European version which can only be exercise at 
expiry). There are also variations in terms of how the 
averaging is defined. The most important is whether 
the average is arithmetic or geometric  . In 

this paper, we discussed arithmetic average option for 
European version. The pricing of Arithmetic Asian 
option has been tackled by a variety of analytical 
approximations and numerical algorithms. They are 
at least four methods for solving this problem. Monte 
Carlo simulations, which calculate the price by 
directly simulating the stock price process, numerical 
solution of a partial differential equation formulation 
of the problem, via finite difference or finite element 
methods  analytical representations in terms 

of infinite series and integral formulae, for example 
Laplace transform, which usually require numerical 
algorithms in order to recover the price , Density 

approximations which replace the sum of Lognormal 
density by a more tractable density , Lattices and 

Binomial trees which are related to finite difference 
method . 

The  for an Asian call option with value 

 is:  

         (1) 

 
with final condition 

 
where, 

        (2) 

 is the average of the history of the asset 
price, where we know that this is independent of the 
current price. Also, we can treat  and  as 

independent variables. 
This paper discusses the issue that arises in 

the valuation of these instruments in a no-arbitrage 
Black-Scholes  frame work, as well how 

these problems may be solved via piecewise 
polynomials, for example Block Pulse Functions 

, Haar functions or Walsh functions, etc. We 

solve  by two dimensional Block-Pulse functions 

and apply their operational matrix. Thus, the 
corresponding  is converted to a nonsingular 

linear system. The outline of this paper is as follows: 
In section , we obtain Analytic solution for . 

Block-Pulse functions are discussed in section . In 

section , error estimate for Block Pulse Functions 

are given. In section , operational matrix for partial 

derivatives are given. We use direct method for 
solving  in section . In section , error analysis 

for this method, using projection operator, is given. 
Numerical examples are given in section . 
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2. Analytical solution 
In order to be able to solve the problem  

subject to  numerically, we perform a variable 

transformation : 

         (3) 
 by which Rogers and Shi  have reduced 

the  from two variables to one. By straight 

forward calculation, we have 

 
(4) 

 substituting these into , we get 

 
  (5) 
 with final condition 
 

                 (6) 

 Thus, under the transformation , the 

arithmetic average of Asian option with fixed strike 
price is reduced to a Cauchy problem  as a 

 parabolic equation in the domain 

. The  is defined on the whole 

real axis. Note that in , a formula was 

obtained for the case  as: 

 

 (7) 

 By making the change of variables as in 
, we get 

 
(8) 

 We consider the solution of the  only 

for  using  for the boundary condition at 

, the complete system of Rogers and Shi's  

is therefore 
 

      (9) 

 
 

      (10) 

 

    (11) 

 
 (12) 

 
Two dimensional Block-Pulse functions 

Block-pulse functions have been studied and 
applied extensively as a basic set of functions for 
signal characterization in system science and control. 
This set of functions was first introduced to electrical 
engineering by Harmuth in  . A set of two 

dimensional Block-Pulse functions 
 

is defined in the region  and  as: 

 

(13) 
 where  are arbitrary positive 

integers, and . There are some 

properties for  as following: 

The  are disjoint and orthogonal 

with each other. It is clear that 
 

 (14) 
 
The  set is complete, when  and 

 approach infinity . We can also expand a two 

variable function  into  series: 

 

       (15) 

 through determining the block pulse 
coefficients: 

 

  (16) 

 in the region  and . 

Also, Parseval's identity holds: 
 

(17) 

 
Also, for vector forms, consider the  

elements of  

 

(18) 
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Above representation and disjointness 
property, follows: 

 

(19) 
 

      (20) 

 
also, 
 

          (21) 

 

         (22) 

 where  is an  vector and . 

Moreover, it can be clearly concluded that for every 
 matrix : 

 

          (23) 

 where  is an  column vector with 

elements equal to the diagonal entries of matrix . 

For simplicity, from now on, we use . 

 
Operational matrix for partial derivatives 

The expansion of a function  over 

 with respect to 

, can be written as 

(24) 
 where 

 

,  

, and 

(25) 
 

      (26) 

Now, expressing , in 

terms of the  as : 

(27) 

 in which , is th component. Thus 

 

    (28) 

 where  is  matrix and is called 

operational matrix of double integration and can be 

denoted by , where 

             (29) 
 so, the double integral of every function 

 can be approximated by: 

 

          (30) 

 by similar method , in terms 

of  as: 

  (31) 
 and 

        (32) 

 Now, we compute operational matrix for  

as: 

      (33) 
and 
 

    (34) 

 where  is boundary vector and  is the 

following  matrix : 

 

   (35) 

 with  

                (36) 

 from  and  we can conclude: 

                       (37) 
 by the same method, operational matrix for 

 are given 
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       (38) 

          (39) 
 where 
 

          (40) 

  (41) 
 
 and  are the following  

matrices: 
 

        (42) 

 

       (43) 

 and ,  are boundary vectors of 

 and , respectively. 

 
Direct method for solving nonlinear  

The results obtained in previous section are 
used to introduce a direct efficient and simple method 
to solve equations . In generality we 

consider equations  of the form: 

        (44) 

                 (45) 
Approximating functions  and  

with respect to  we have: 

         (46) 
 hence 

     (47) 
 

    (48) 
 

By substituting the above equations into 
 and using boundary and initial conditions, we 

obtain a linear system with  

as unknowns: 
 

           (49) 

 
Error analysis 

 Let the problem be of the form 
 

 (50) 

 where , ,  belong to , 

and  is linear operator of the form  

    (51) 

 It is assumed,  is an element of a 

Hilbert space  with inner product 

 and norm  are bounded as follows:  

      (52) 

  

          (53) 

 Let  be the projection operator defined on 

, where  is finite 

dimensional, as:  

  (54) 

 The discrete approximation of  is :  

  (55) 

 where, for each  belongs to an 

dimensional subspace  and  is a linear 

operator form  to  of the form 

          (56) 

 First, we find an estimation of  

for arbitrary  

 Lemma : Let  be defined on 

 and  be projection operator 

defined by  then       (57) 

 where  for 

.  

 Proof: The integral  is 

a ramp  on the subinterval 

 with average value . 
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The error in approximating the ramp by this 
constant value over the subinterval 

 is 

         (58) 
 hence, using  as least square of the error 

on , we have  

        (59) 

 

               (60) 
 and on the interval  we have 

 

       (61) 

 

 Theorem: Let , , ,  and  

be in  and  be approximate 

solution by 2DBPFs and  be a linear operator 

defined as (52) such that 
 

 (62) 

 then  

(63) 
 where  is adjoint of . 

 proof: By using properties of projection 
operators,  and  thus  

(64) 
  

 (65) 

  

 

 
 

 

(66) 
 now, applying the above lemma we have  

(67) 
 It is sufficient to fined a bound for 

,  

 
where  is: 

 

 

 
using Cauchy-Schwartz inequality  

 

by substituting in   

(68) 
  

     (69) 

 where 

 for , so by hypothesis of the 

theorem,  is a finite number and . So, if 

 then  tends to zero.  

Numerical examples 
 Consider the following two examples. We 

solve them by direct method and numerical results 
obtained here can be compared with exact solution 

. The numerical results show that with 

increasing , the approximate solution gets better. To 

show the accuracy of the method we report infinity 
norm of the error which is defined by  

      (70) 

 
Example 1 

 In  let  

numerical results for different  are shown in Table 

. Error function between exact solution and 

numerical solution is plotted in Figure  for . 

 
Table 1: Error between exact solution and 
numerical solution in U(x,0). 
m 5 10 20 30 
e 1.0945e-4 2.8247e-4 3.7763e-5 1.1421e-5 

 
Example 2 
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 In  let  ,   

. Numerical results for some  are given in 

Table . Error function between exact solution and 

numerical solution are plotted in Figure  for .  

    
Table 2: Error between exact solution and 
numerical solution in U(x,0). 
m 5 10 20 30 
e 2.7934e-4 3.8351e-4 5.2384e-5 1.5950e-5 

 
Figure 1: error function for u(x, 0) for example 1, 
m=5. 

 
Figure 2: error function for u(x, 0) for example 2, 
m=5. 

 
 
Conclusion 

 In this paper, we introduced a new method 
for solving partial differential equations. We used 

 and its operational matrix to solve Asian 

option problem. The proposed method is simple 
theoretically, thus we can use it for solving linear and 
nonlinear partial differential equations. Also, we can 
apply this method to other complex options, for 
example, American option, Exotic option, etc.  
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