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Abstract: Due to the importance of rolling bearings as one of the most commonly used industrial machinery 
elements, it is necessary to develop proper monitoring and fault diagnosis procedure to suppress malfunctioning and 
failure of these elements during operation. For rolling bearing fault detection, it is expected that a desired time 
domain analysis method has good computational efficiency. The interesting point of this investigation is the 
introduction of an in such systems through extracting features in time effective method for fault detection and 
diagnosis in such systems through extracting features in time domain from vibration signals , artificial neural 
networks (ANNs) and support vector machines (SMVs)  that used for classification of rolling-element bearing 
faults. The extracted features from original and preprocessed signals are used as inputs to the classifiers for two-
class (normal or fault) recognition. The classifier parameters This features are classified successfully using SVM 
and ANN classifier, The classifiers are trained with a subset of the experimental data for known machine conditions 
and are tested using the remaining set of data. The procedure is illustrated using the experimental vibration data of a 
rotating machine. The roles of different vibration signals and signal preprocessing techniques are investigated The 
performance of SVM have been found to be substantially better than ANN with the entire feature set.  
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1. Introduction 

Roller bearings are the important and frequently 
encountered components in the rotating machines that 
find widespread industrial applications. Therefore, fault 
diagnosis of the roller bearings has been the subject of 
extensive research. Rolling bearing faults can have 
many reasons, e.g. wrong design, improper mounting, 
acid corrosion, bad lubrication and plastic deformation 
[1, 2]. The process of roller bearing fault diagnosis 
includes the acquisition of information, extraction of 
features and recognition of conditions. The latter two 
have priority to the first one. Different methods are 
used for the acquisition of information; they may be 
broadly, classified as vibration and acoustic 
measurements, temperature measurements and wear 
debris analysis. Among these, vibration measurements 
are commonly used in the condition monitoring and 
diagnostics of the rotating machinery [3]. The vibration 
measurement of the roller bearing can be made using  
some accelerating sensors that are placed on the bearing 
house. When faults occur in the roller bearing, the 
vibration signal of the roller bearing would be different 
from the signal under the normal condition [4, 5, 6]. So 
far, many conventional vibration-signal-analysis-based 
methods have been applied to rotating machine fault 
diagnosis. Quite a few works have been done in this 
field, e.g. by Wang and McFadden [7], Shiroishi et al. 

[8], Scholkopf [9], Dellomo [10], Li et al. [11], Jack 
and Nandi [12], Nikolaou and Antoniadis [13], Samanta 
et al. [14], Al-Ghamd and Mba [15], and Purushotham 
et al. [16]. The possibilities of using support vector 
machines (SVMs) in machine condition monitoring 
applications are being considered only in recent years. 
For example, Nandi [17], and then, Jack and Nandi [18] 
have provided a procedure for condition monitoring of 
rolling element bearing. Then they improved their work 
by using GAs for automatic feature selection in 
machine condition monitoring [12, 19-20]. Samanta et 
al. developed a procedure similar to that of Jack and 
Nandi but different in processing time-domain signal 
[14], where only two cases were studied which are false 
and normal conditions. Finally, Rojas and Nandi [20] 
have worked on the training of SVMs by using the 
sequential minimal optimization (SMO) algorithm. But, 
multi-class Support vector machines (MSVMs), based 
on statistical learning theory that are of specialties for a 
smaller sample number have better generalization than 
ANNs and guarantee the local and global optimal 
solution are exactly the same [21]. Meantime, the 
learning problem of a smaller number of samples can 
be solved by SVM. Recently, it has been found  that 
SVMs can be effectively applied to many applications 
[22-25]. Due to the fact that it is practically difficult to 
obtain sufficient fault samples, SVMs are introduced 
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into rotating machinery fault diagnosis due to their high 
accuracy and good generalization for a smaller sample 
number. 

In this paper, The interesting point of this 
investigation is the introduction  of an effective method 
for fault detection and diagnosis in such systems 
through features in optioned from vibration signals , 
artificial neural networks (ANNs) and support vector 
machines (SMVs)  that used for classification of 
rolling-element bearing faults. The extracted features 
from original and preprocessed signals are used as 
inputs to the classifiers for two-class (normal or fault) 
recognition. The classifier parameters This features are 
classified successfully using SVM and ANN classifier, 
The classifiers are trained with a subset of the 
experimental data for known machine conditions and 
are tested using the remaining set of data. The 
procedure is illustrated using the experimental vibration 
data of a rotating machine. The roles of different 
vibration signals and signal preprocessing techniques 
are investigated The performance of SVM have been 
found to be substantially better than ANN with the 
entire feature set. 

2.  Artificial neural network 
The feed forward neural network, used in this 

work, consists of input layer, hidden layer and output 
layer. The input layer has nodes representing the 
normalized features extracted from the measured 
vibration signals. 
There are various methods, both heuristic and 
systematic, to select the neural network structure and 
activation functions [26]. The number of input nodes 
was varied from 1 to 30 and that of the output nodes 
was 2. The target values of two output nodes can have 
only binary levels representing ‘normal’ (N) and 
‘failed’ (F) bearings. The inputs were normalized in the 
range of 0-1. In the ANN, the activation functions of 
sigmoid were used in the hidden layers and in the 
output layer, respectively. The ANN was created, 
trained and implemented using Matlab neural network 
toolbox with Backpropagation (BPN) and the training 
algorithm of Levenberg-Marquardt. The ANN was 
trained iteratively to minimize the performance function 
of mean square error (MSE) between the network 
outputs and the corresponding target values. At each 
iteration, the gradient of the performance function 
(MSE) was used to adjust the network weights and 

biases. In this work, a mean square error of
510

, a 

minimum gradient of 1010 and maximum iteration 
number (epoch) of 1000 were used. The training 
process would stop if any of these conditions were met. 
The initial weights and biases of the network were 
generated automatically by the program. 

3. SVM 
In order to calculate decision surfaces directly 

instead of modeling a probability distribution across 
training data, SVM makes use of a hypothetic space of 
linear functions in a high dimensional feature space. A 
support vector (SV) kernel is utilized for mapping the 
data from input space to a high-dimensional feature 
space; this makes easy the process of the problem in 
linear form. SVs are samples that have [28]. SVM 
always finds a global minimum because it usually tries 
to minimize a bound on the structural risk, rather than 
the empirical risk. Empirical risk is defined as the 
measured mean error rate on the training set as below: 

1

1
( ) | ( , ) |

2

l

emp i i
i

R y f x
l

 


    (1) 

where l is the number of observations, iy is the class 

label and ix  is the sample vector. The structural risks, 

defined as a structure derived from the inner class of the 
function in the nested subset, find the subset of the 
function that minimizes the bound on the actual risk. 
SVM achieves this goal by minimizing the following 
Lagrangian formulation: 

2

1 1

1
|| || ( . )

2

l l

p i i i i
i i

L w y x w b 
 

       (2) 

Where i  is positive Lagrange multiplier [27, 28]. 

SVM uses some kernels to map the data from the input 
space to a high-dimensional feature space which 
facilitates the problem to be processed in linear form. In 
this paper, linear and radial basis function (RBF), 
quadratic and polynomial kernels have been used.  

4. Feature extraction 
Statistical analysis of vibration signals yields 

different primary and secondary parameters. Research 
works have been reported (McFadden & Smith, 1984) 
on using these parameters in combinations to elicit 
information regarding bearing faults. Such procedures 
use allied logic often based on physical considerations. 
We selected eleven parameters as a basis for our study. 
They are mean, median, standard deviation, variance, 
kurtosis, skewness, , minimum, Zero Crossing Rate, 
Peak Rate and maximum. These features were extracted 
from vibration signals. The statistical features are 
explained below (where ‘N’ is the number of sample 
points.) Some features are explained as follows. 
 (a)  Mean:   
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 (b) Standard deviation: this parameter is a signature of 
the effective energy or power content of the vibration 
signal, and represents deterioration in bearing 
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condition. The following formula has been used for 
computation of the standard deviation: 
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(c) Sample variance: it is variance of the signal points 
which can be calculated using the following formula:  
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(d) Kurtosis: the value of this feature, which is a 
representative of the flatness or the spikiness of the 
signal, is very low for good bearings and high for faulty 
bearings due to the spiky nature of the signal.  
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(e) Skewness: this feature, representing the asymmetry 
of a distribution around its mean, can be obtained from 
the formula: 
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(f) Minimum value: it refers to the minimum signal 
point value in a given signal. As the bearing parts (inner 
race, outer race and roller) get degraded, the vibration 
levels seem to go up. Hence, it can be utilized for fault 
detection. 
(g) Maximum value: it refers to the maximum signal 
point value in a given signal. 

5. Experimental Procedure 
Two data sets, each containing twenty data files, 

were collected from Two bearings which are the same 
but with different faults. The first data file was 
collected from each test bearing when the loading was 
zero, and the bearing was Running at the highest speed 
(3000 rpm). The load was then increased step by step, 
the speed was kept at 3000rpm, and four other data files 
were collected. The load was then brought back to zero, 
and speed was decreased by 500 rpm; then, the next 
five data files were collected under five different loads 
similar to the first five data files. This procedure was 
continued until all twenty five sets of data were 
collected. The sampling frequency was chosen as 41.67 
kHz; this sampling frequency along with the data record 
size of 4098 guarantees that the sampling procedure 
covers at least 1.6 revolutions of shaft at the lowest 
speed.  

The diagram block of detection of the type of 
faults in bearings has been illustrated in Table (1). 

6.  TEST BEARINGS 
An impact impulse is generated every time a ball 

hits a defect in the raceway or every time a defect in a 
ball hits the raceway. Each of such impulses excites a 

short transient vibration in the bearings at its natural 
frequencies. Each time this defect is rolled over, an 
impact is produced whose energy depends on the 
severity of the defect. Many failure modes of a rolling 
element bearing produce such a discontinuity in the 
path of the rolling elements. Moreover the majority of 
rolling element bearing failure cases begin with a defect 
on one of the raceways. In this research, defects on 
inner raceway (IRD) and normal Bearing (GBR) are 
used. 

 
7. Conclusion  

Due to the importance of rolling bearings as one 
of the most populous used industrial machinery 
elements, development of proper monitoring and fault 
diagnosis procedure to suppression malfunctioning and 
failure of these elements during operation is necessary. 
For rolling bearing fault detection, it is expected that a 
desired time domain analysis method has good 
computational efficiency. A procedure is presented for 
diagnosis of bearing condition using two classifiers, 
namely, ANNs and SVMs with feature selection from 
time-domain vibration signals. The roles of different 
vibration signals and signal preprocessing techniques 
have been investigated. The performance of SVM have 
been found to be substantially better than ANN with the 
entire feature set. 
 

8. Figures and Tables  
8.1. Figures 

In this section, the diagram block of detection 
of the type of faults(Fig.1), the original acceleration 
vibration signal for two types of faults at 3000rpm 
speed and 500N load have been shown (Fig.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: the diagram block of detection of the type of 
faults. 
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Fig.2: Original acceleration vibration of the signal for 

two different faults, (a): Inner race way fault, (b) Good 
bearing 

 
8.2. Table 
In this section, the roller bearing fault diagnosis for 

two type faults at 3000rpm speed and 1000N load have 
been shown in Table 1. 

 
TABLE 1: Performance comparison of classifiers with 

different number of features 

Number of features Test success (%) 
 SVM PNN 
4 68 58 
7 85 79 

11 94 89 
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