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ABSTRACT: Rutting is one of the most important deteriorations in flexible pavements which a significant amount of maintenance 
and rehabilitation funds are consumed for repairing it annually. On the other hand lack of a simple test to determine specimen 
resistance to permanent deformation as the main reason for asphalt rutting is sensible in Superpave first level mix design which owes 
considerable advantages in comparison with the marshall method. Prevalent methods of evaluating rutting potential of asphalt 
mixtures are usually expensive and time consuming. Mentioned parameters illustrates the necessity of developing a simple method, 
not only having fine precision but also be able to predict specimens rutting performance in the short term in laboratory. In this 
research two types of aggregates (silica and calcareous base), two types of gradation, two types of bitumen, two types of filler and 
three bitumen contents were used to prepare specimens. After modeling gyratory shear stress, the model and gyratory compaction 
slope parameters were used to develop two mathematical models to estimate specimen wheel Track apparatus rut depth. These 
models were validated using ANN and GA and make it possible to evaluate rutting potential while preparing specimens in laboratory 
to determine optimum bitumen content. Hence not only expensive instruments for rutting test aren’t necessary but a considerable 
reduction in mix design procedure time is gained. 
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1. Introduction 

A rut is a surface depression in the wheel path due to cumulative 
permanent deformations which can lead to pavement drainage 
capacity reduction, hydroplaning, raise in deterioration rate due to 
moisture and increase in fatigue cracking of flexible pavements as 
a result of thickness reduction in rutted location [1]. Rutting could 
be a result of mixture volume reduction (pavement consolidation 
due to traffic (figure 1)), asphalt permanent deformation in a 
constant volume (plastic deformations as a result of shear stresses 
in asphalt mixtures (figure 2)) or a combination of these reasons 
[2]. Among different layers exposed to rutting, asphalt layer owes 
high share, hence noticing permanent deformations of asphalt 
mixtures because of low shear stress is an important issue in 
presenting the appropriate mix design procedure [3]. 
Different researches used various methods to evaluate asphalt 
mixtures rutting potential. Dynamic creep test is used widely in 
Finland, Sweden and Australia while LCPC wheel trucker is used 
more in Austria, France, Hungary, Romania and Switzerland. 
Hamburg Wheel Tracking Device and Georgia Loaded Wheel 
Tester are used for rutting performance evaluation in many 
countries in the world. Wheel Trucker applies wheel cyclic load to 
the specimen and the rut depth is recorded after 8000 cycles in a 
specific temperature. It is proofed that rut depth is related to 
specimen shear strength inversely. Although it is a simple test, but 
it is time consuming and the instrument used for loading is 
expensive. So developing a method to determine asphalt mixture 
shear strength in less time with cheaper equipments seems 
necessary.  
2. Problem Definition 

2.1. Research Targets 
Asphalt mixtures low quality plays an important role in mixture 
rutting. Aggregates rotational or transitive movement in asphalt 
mixture due to insufficient compaction leads to permanent 

deformation occurrence along shear plates [4]. So compaction as 
the most effective parameter in aggregates structure and 
positioning in mixture has an important effect on mixture 
resistance to permanent deformation and rutting [5]. According to 
previous researches, a disadvantage of Marshall method is 
compacting procedure which doesn’t simulate real condition fine 
[6]. Gyratory Compacting Machine, the result of 40 years 
researches in rotational compacting system were used by SHRP1 in 
SUPERPAVE2 mix design procedure. This design method has 
three levels which are categorized based on traffic and load. First 
SUPERPAVE level (AASHTO MP2, PP28) is for traffic with less 
than 1000000 ESAL3 including volumetric analysis and simple 
tests [7]. This level which is noteworthy level for engineers 
because of being simple and economical consideration doesn’t 
include asphalt performance tests. To complete first level design in 
these method simple tests should be used to evaluate asphalt 
mixture workability such as rutting resistance [8]. 
In this paper it is tried to develop predicting models of rutting 
performance by preparing specimens with a wide range of 
aggregate types and gradations, bitumen types and contents and 
filler types and testing them by wheel trucker, so the mixture 
rutting performance can be predicted during mixture preparation 
before production without consuming considerable time and cost.  
2.2. Literature Review 
Lack of a test with mentioned properties to predict asphalt 
mixtures rutting strength in 1st level caused validated research 
centers such as NCHRP4 and FHWA5 and FAA6 to start a spread 
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researches in this field [9-11]. Other studies with this target and 
using SGC output data will be mentioned in this section: 
2.2.1. Studies on Compaction Slope in SGC7 
The first idea of using compaction slope was developed for the 
first time in 2000 [12]. Later studies showed compaction slope is 
an index of aggregates internal friction [13]. So this parameter 
can’t be used singly to predict asphalt shear strength performance. 
2.2.2. Studies Considered a Specific Part of Compaction Slope 
Researches define various indexes for asphalt rutting resistance 
with studying volumetric mass against gyration curve. One of 
these parameters was TDI8 which is assumed as compaction curve 
integral from 4% to 2% voids. DEI9 was defined as 8% to 4% 
voids in mentioned curve and CEI10 as compaction start to 8% 
voids integral. Models based on these indexes were affected by 
aggregates positioning in molds greatly and wide tests showed this 
models aren’t reliable [14-15].  
2.2.3. Studies on Shear Parameters During Compaction 
Gyratory Maximum shear strength, gyration corresponding with 
maximum shear and gyratory shear slope were defined using 
gyratory shear stress curve. Studies in Florida and Michigan 
University showed although there is a relation between these 
parameter with APA11 rut depth, but developed models have no 
convenience correlation coefficient and aren’t applicable in 
practically [16]. 
2.3. Research Assumptions 
Asphalt rutting is cumulative deformation due to base and subbase 
layers consolidation, abrasion and permanent deformation in 
asphalt layer. The main reason of rutting is asphalt permanent 
deformation [17]. This parameter was studied in this research 
under 50°C temperature. Various materials, gradation, bitumen 
and filler were used in this study to increase applicability of 
research results.  
3. Methodology 
3.1. Materials Selection and Related Tests 
Rudehen Asbcheran mine (east of Tehran) and Rivand mine 
(Sabzevar) were used for limestone aggregates and silica 
aggregates source respectively. Minimum Percentage of Fracture, 
Maximum Abrasion, Maximum Water Absorption, Minimum 
Adhesion in Bitumen-Aggregate System, Minimum Sand 
Equivalent and Minimum Sulfate Soundness Value tests results 
were in the standard range. Saveh mine rock powder and Qom 
limestone powder passed from 0.075mm sieve were used as two 
filler types in specimen preparation procedure. PI and Hydrometry 
test results located in standard range either. Bitumen was supplied 
from Pasargad Oil Company in tow types of 60-70 and 85-100. 
Penetration, Saybolt Forol Viscosity, Softening Point, Ignition 
Point, Specific Gravity, Weight Loss and Ductility performed for 
both types and results passed Code234 (Iranian Pavement Code 
[18]) requirements.  
3.2. Optimum Bitumen Content Determination 
3.2.1. Gradation  
Middle range of number 4 and 5 continuous gradations were used 
according to table 1 [18]. 
3.2.2. OBC Determination and Specimen Naming 
Since various types of gradation, filler, bitumen and aggregates, 
288 specimens were prepared for OBC using marshal method and 
finally 16 bitumen contents were determined as table 2. 
Combination of two letters and two numbers was used for 
specimen naming. From left to right, first character shows 
aggregate type (S for silica base aggregate and A for limestone 
base aggregate), second character is a number shows gradation 
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number (4 for gradation number 4 and 5 for gradation number 5), 
third character is the filler type (P for rock powder and A for 
limestone powder) and the forth character is the bitumen type (6 
for 60-70 bitumen and 8 for 85-100 bitumen).  
3.3. Preparing Specimens for Tests 
3.3.1. Choosing Gyration Number  
Gyratory Compaction Machine was used for compacting 
specimens. 8, 95 and 150 gyrations were chosen for Nini, Ndes and 
Nmax respectively according to table 3 for ESAL equal to 106. 
3.3.2. Determining Number of Specimens for Research 
To perform rutting test, due to various parameters, 144 specimens 
were prepared totally with OBC, 0.5% less and 0.5% more 
bitumen content with SGC. To validate test results 3 specimens 
were made for each similar condition.  
 
3.4. Gyratory Parameters 
3.4.1. Shear Stress Modeling Parameters 
Shear stress versus gyration number is one of the output curves of 
gyratory compactor. To gain more parameters from gyratory 
output curves and since it is proofed shear stress is related to 
rutting inversely, gyratory shear stress were modeled versus 
gyration number as independent parameter. Following logarithmic 
model seemed to be the best models after testing all models: 
GS = K1 Ln(N) + K2             (1)                                                                                                 
In which Gs is gyratory shear stress in a defined N. 
Graphs such as figure 3 were drawn for all 144 specimens and the 
result of modeling is shown in table 4. As it is clear in this table 
more than 96.5% of models have more than 75% correlation 
coefficient. 
Maximum shear (Sm) is the other variable which can be 
determined by the presented model except K1 and K2. 
3.4.2. Compaction Slope Parameter 
One of the parameters measured by gyratory in each cycle is 
specimen height. Since specimen height is distinguish in each 
cycle and constant specimen weight and specimen cross section, 
compaction slope can be determined using eq. (2). Studies showed 
compaction slope is related to aggregates internal friction directly 
[19]. So it can be effective in mixtures shear strength: 
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%G(mm),Ndes and %G(mm),Nini: Asphalt mixture maximum specific 
gravity in initial gyration and design gyration respectively, 
hini and hdes: Specimen height in Nini and Ndes during compaction 
respectively, 
Gmb and Gmm: Bulk and maximum specific gravity respectively. 
 
3.4.3. Other Parameters 
Other parameters like air voids in initial and design gyration (Vaini 
and Vades), gyration number in which maximum shear stress is 
given (N-Sm), Voids in mineral aggregates (VMA), height and 
density variations were determined for each specimens which only 
K, K2 and Sm introduced as effective parameters in sensitivity 
analysis. 
3.5. Rutting Test 
Rutting test was performed for each specimen in 50°C, under 
700kpa pressure and 60 loads per second as loading rate and the 
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rut depth after 8000 cycles were recorded. The results could be 
seen in table 5. 
4. Presenting Laboratory Model 
4.1. Developing a Model using SPSS 19 
Predicting a variable behavior using other variables behaviors is 
the target of regression. It means to recognize the relation between 
effective parameters (x) and affected parameters (y) and to ensure 
a meaningful correlation between variables and finally to estimate 
a variable using another one. Correlation Coefficient (R2) is a 
parameter which illustrates a relation between model results and 
actual results. Two assumptions are considered in regression as H0 
and H1:  
H0: R=0 and H1: R≠0      (5) 
                                                                                                                    
H0 assumption should be rejected using sig F change coefficient. 
Whatever this coefficient is less, R2 meaningfulness is more and so 
the model is more validated. This coefficient should be less than 
0.05 since reliability is considered as 95% in this model. Statistical 
analysis results of 144 data series in SPSS 19 is listed in table 6 
and two models were gained as following: 
4.1.1. Model Number 1 
 According to tables 7 and 8, eq. (6) is the output model: 
 
WT = 0/009 K2 – 0/285 K    (6)                                                                                                                
In which: 
WT: Rut depth of Wheel Trucker, mm 
K: Gyratory Compaction Slope from eq. (2) 
K2: Gyratory Shear Stress Curve Y-Intersect from eq. (1) 
As it is obvious from tables 7 and 8, R2 is 0.921 for this model 
which is meaningful in 95% reliability level. 
4.1.2. Model Number 2 
According to tables 9 and 10, eq. (7) is determined: 
   
WT = -0/376 K + 0/008 Sm   (7)                                                                                                                                                                    
In which: 
WT: Rut depth of wheel Trucker, mm 
K: Gyratory Compaction Slope from eq. (2) 
Sm: Maximum Shear Stress in Gyratory Curve 
As it is obvious from tables 9 and 10, R2 is 0.92 for this model 
which is meaningful in 95% reliability level. 
4.2. Validating the models using ANN 
ANN12 is a simulation of brain nerve and has learning, 
generalization, and decision making power like human’s brain. In 
designing the network, after defining a dynamic system 
mechanism, the model is trained and system mechanism is saved 
in model memory, so this memory is used to estimate new cases. 
Neural networks have been used in various aspects of pavement 
engineering such as estimating asphalt dynamic and elasticity 
modulus [20-21], bitumen properties effect on asphalt features 
[22] and Mixture Compaction Quality Control [23]. 
A neural network is composed from several processors which are 
called neurons or nodes. Each neuron is connected to other 
neurons with oriented lines having specific weight. Weight shows 
the amount of information used by network to solve the problem. 
Neurons are organized in groups called layers. Generally there are 
two layers to connect network with out of it as input layer (to get 
input data) and output layer to transfer answers out of network. 
Other layers between these two layers are called hidden layers. 
Network input and output layer number depends on dependent and 
independent variables of the desired relation respectively. Both 
models in this paper have two independent variables and one 
dependent variable, so the network in both of them has two input 
neurons and one output neuron (figure 4). 
Figure 5 shows input (I) and output (O) and a hidden neuron 
structure. B and w parameters could be set up and f function type 

                                                
12 Artificial Neural Network 

is selected by designer so the neuron output is desired. 
Determining b and w for total network is called network training. 
Network output is compared with actual observations and error is 
calculated in training process. Coefficients are modified based on 
this error. Whatever root mean square error (RMSE) is closer to 
zero, error is less, so the model is better. 
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MATLAB 2008 software was use for coding the network. About 
67% of data were used for training the network after normalizing 
by eq. (10) and remained data were used for validation. 
X n = (x – x min) / (x max – x min)      0 ≤ Xn ≤ 1                                                                                 
(10) 
4.2.1. Neural Network results for model number 1 (WT=0.009K2-
0.285K) 
Considering two neurons in input layer and one in output and 
using 5, 10, 15 and 20 neurons in median layers, results were 
obtained as table 11 and figure 6. R2 were determined as 0.8578 in 
best structure in validation phase as it is stated in table. 
4.2.2. Neural Network results for model number 2 (WT=-
0.376K+0.008Sm) 
Neurons and layers number were assumed as the network for 
model number 1 and the results are illustrated in table 12 and 
figure 7. R2 was determined as 0.8846 in best structure in 
validation phase as it is clear in table. 
4.3. Validating models Using GA 
Genetic Algorithm (GA) is a method of optimizing and validating 
data which using a natural inception performs based on evolution 
principle (Survival of the fittest). GA applies survival fittest rule 
on a set of solutions to obtain better answers. Better estimations of 
solutions are calculated using a selection process proportional to 
answer costs in each generation and reproduction selected answers 
with functions imitated from natural genetic. Hence the new 
generation is more compatible with problem condition after this 
process. Independent variables should be determined such that less 
variation existed between actual answer and estimated answer of 
dependent variable of that model in each step of evolution (figure 
8). MATLAB 2008 software was used for coding and Excel 2007 
for comparing the results in this study. 
3.4.1. GA results for model number 1 (WT=0.009K2-0.285K) 
As it is illustrated in figure 9, 0.965 is obtained as determination 
coefficient for this model. 
3.4.2. GA results for model number 2 (WT=-0.376K+0.008Sm) 
As it is illustrated in figure 10, 0.8575 is obtained as determination 
coefficient. 
5. Conclusion 
One of the most important consequences of this study is shear 
stress modeling versus gyration number. It was proofed that 
logarithmic model results in the best trend. This curve has two 
main parts. The first part can be named as compaction phase, 
which has an intense slope. Shear stress variation in this part is 
more than condensation part. Voids variation of first part is more 
that the second one too. Two models for predicting rut depth were 
presented using Y-Intercept of this relation, compaction slope and 
maximum shear stress. Compaction slope coefficient is negative in 
both of the models. In other words specimens with more 
compaction slope are more resisted to rutting which is due to more 
internal friction and structural establishment of them. Maximum 
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shear stress positive coefficient and shear stress curve intercept of 
these models states that asphalt mixtures with more shear stress in 
compaction phase are exposed to rutting more. Simply means 
more shear stress in condensation phase in comparison with 
compaction phase shows more shear strength of the mixture. 
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8. Tables 
Table 1. Aggregates gradation for Binder and Topka layers [18] 

 
 
 
Table 2. Determined OBC for 16 various asphalt mixture combination 

A5A8 A5A6 A4A8 A4A6 A5P8 A5P6 A4P8 A4P6 Limestone Specimen Specification 

6.00 6.24 5.90 6.16 5.80 5.92 5.70 5.81 OBC 

S5A8 S5A6 S4A8 S4A6 S5P8 S5P6 S4P8 S4P6 Silica Specimen Specification 

5.25 5.45 5.15 5.40 5.02 5.24 4.96 5.05 OBC 

 
Table 3. Nini, Ndes and Nmax in SGC 

 
 
 
Table 4. Determining Correlation Coefficient of presented model for all gyratory shear stress curves 
 (144 specimens) 

Total 
Correlation Coefficient (R2) 

<75 80-75 85-80 90-85 95-90 100-95 R2 Range 

144 5 5 11 10 34 79 Number of Specimens 

100 3.47 3.47 7.64 6.94 23.61 54.86 Percent 
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Table 5. Gyratory compactor and rutting test results for 144 specimen 
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Table 6. Parameters statistical analysis in SPSS 19 results 

 N Range Minimum Maximum Mean Std. Deviation Variance 

WT 144 12.82 0.45 13.27 5.1768 2.32230 5.393 

k 144 5.59 6.08 11.67 8.3197 1.34949 1.821 

k1 144 57.46 18.22 75.68 47.6105 9.78674 95.780 

k2 144 305.65 621.48 927.13 809.1351 58.07185 3372.339 

Sm 144 328.00 813.00 1141.00 1018.2569 69.97280 4896.192 

        
 
Table 7. Model Number 1 statistical specification summary 

Model R R Square Adjusted R 
Square 

Std. Error of the 
Estimate 

Change Statistics 
Sig. F Change 

1 0.921 0.848 0.845 2.22973 0.000 
 
 
Table 8. Model Number 1 independent parameters coefficients 

Model 

Un standardized 
Coefficients 

Standardized 
Coefficients 

T Sig. 

0.95 % Confidence Interval 
for B 

B Std. Error Beta Lower Bound Upper 
Bound 

1 k -0.285 0.114 -0.423 -2.493 0.014 -0.511 -0.059 
k2 0.009 0.001 1.332 7.846 0.000 0.007 0.012 

 
Table 9. Model Number 2 statistical specification summary 

Model R R Square Adjusted R 
Square Std. Error of the Estimate 

Change Statistics 
Sig. F Change 

2 0.920 .847 0.845 2.23541 0.847 
 
 

Table 10. Model Number 2 independent parameters coefficients 

Model 

Un standardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

0.95% Confidence 
Interval for B 

B Std. Error Beta Lower Bound Upper 
Bound 

2 
k -0.376 0.127 -0.559 -2.967 0.004 -0.626 -0.125 

Sm 0.008 0.001 1.465 7.780 0.000 0.006 0.010 
 
 
Table 11. Neural Network Run Output for Model Number 1 (for 5, 10, 15 and 20 neurons in a hidden layer) 

Validation Phase Training Phase 
Neural Network Structure 

R2 RMSE R2 

0.5411 0.0192 0.6403 2-5-1 
0.7509 0.0120 0.7942 2-10-1 
0.8438 0.0091 0.8491 2-15-1 
0.8578 0.0085 08698 2-20-1 

 
Table 12. Neural Network Run Output for Model Number 2 (for 5, 10, 15 and 20 neurons in a hidden layer) 

Validation Phase Training Phase 
Neural Network Structure 

R2 RMSE R2 

0.4578 0.0197 0.6282 2-5-1 
0.5985 0.0171 0.7892 2-10-1 
0.7809 0.0112 0.8595 2-15-1 
0.8846 0.0085 0.8900 2-20-1 
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9. Figures 
 

 
Fig 1. Rutting due to underneath layer deformation 

 
Fig 2. Rutting in asphalt layer due to lack of shear strength 
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Figure 3. Shear stress modeling versus gyration number (for one of the limestone specimens, gradation number 4, rock powder as the 
filler and 60-70 bitumen) 
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Figure 4. ANN Layers 

 
Figure 5. Neural Network Architecture 
 

 
Figure 6. 1-20-2 structure curve in validation phase of model number 1 (best structure with R2=0.8578) 
 

 
Figure 7. 1-20-2 structure curve in validation phase of model number 2 (best structure with R2=0.8846) 

Input 
Function Creation 
with Coefficients 

and Weights 

Initial 
Output 

Output 
Comparison 

Target 

Weight 
Modification 

Final 
Output 

I x=I*w+b 

b 

w 

ƒ(x) O=ƒ(w*I+b) 



Life Science Journal 2012;9(4)                                                          http://www.lifesciencesite.com 

 
 

4149 

 

 
Fig 8. Applied GA Flowchart 
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Fig 9. a) Regression on actual and estimated values of model number 1, b) Comparison between actual and estimated values of 
model number 1 during evolution 
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Fig 10. a) Regression on actual and estimated values of model number 2, b) Comparison between actual and estimated values of 
model number 2 during evolution 
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