Improving the Modified Gause - Seidel Method for M - Matrices

Nasser Mikaeilvand ${ }^{1}$ and Zahra Lorkojori ${ }^{2}$

${ }^{1}$ Department of Mathematics, Ardabil branch, Islamic Azad University, Ardabil, Iran.
${ }^{2}$ Young Researchers Club, Ardabil branch, Islamic Azad University, Ardabil, Iran.
Corresponding author: Nasser Mikaeilvand, email: Mikaeilvand@auArdabil.ac.ir

Abstract

In1994, M. Usui et al. have reported the modified Gauss-Seidel method with a preconditioner $(I+U)$. The preconditioning effect is not observed on the n-th row. In this paper, to deal with this drawback, we propose a new preconditioner. In addition, the convergence and comparison theorems of the proposed method are established.

[Nasser Mikaeilvand and, Zahra Lorkojori. Improving The Modified Gause - Seidel Method For M - Matrices. Life Sci J 2012;9(4):4093-4098]. (ISSN: 1097-8135). http://www.lifesciencesite.com. 608

Keywords: M-Matrices, Preconditioned system, Gauss-Seidel method

1- Introduction:

We consider the following linear system:
$A X=b$,
where $A \in R^{n \times n}, b \in R^{n}$ are given and $x \in R^{n}$ is unknown. For simplicity, let $A=I-L-U$, where I is the identity matrix, L and U are strictly lower and strictly upper triangular matrices, respectively.

Now, consider a preconditioned system of (1):
$P A X=p b, \quad$ (2)
where P is a non-singular matrix. To effectively solve the preconditioned linear system (2), a variety of preconditioners have been proposed by several authors $[1-8,11]$ and the references therein. The preconditioning effect is not observed on the last row of matrix A. For example, the preconditioner $P_{U_{1}}=$ $I+U$ In [11] where U is a strictly upper triangular part of -A.

In 2009, Zheng et al. [4] proposed the following two preconditioners:
$P_{\max }=I+S_{\max }+R_{\max }$
and
$P_{R}=I+S_{\max }+R$
where
$S_{\text {max }}=\left\{\begin{array}{cc}-a_{i, k_{i}} i=1, \ldots, n-1, j>i ; \\ 0, & \text { other Wise },\end{array}\right.$
$K_{i}=\min \left\{j|\max |\left|a_{i, j}\right| i<n\right\}$
and
$\left(R_{\text {max }}\right)_{i, j}=\left\{\begin{array}{cc}-a_{n, k_{n}} & i=n, j=K_{n} \\ 0, & \text { Other Wise }\end{array}\right.$
with $K_{n}=\min \left\{j| | a_{n, j}| |=\max \left\{\left|a_{n, l}\right|, l=1, \ldots, n-\right.\right.$ 1\}\}
and
$(R)_{i, j}=\left\{\begin{array}{cc}-a_{i, j} i= & n, 1 \leq j \leq n-1, \\ 0, & \text { Other Wise }\end{array}\right.$
The comparison result between the preconditioners $P_{\max }$ with P_{R} [4] shows that the preconditioner P_{R} is better than $P_{\max }$ for solving the preconditioned linear system (2).

In this paper, we propose the following a preconditioner:

$$
\begin{aligned}
& P_{U}=(I+U+R) \\
& =\left(\begin{array}{ccccc}
1 & -a_{12}-a_{13} & \ldots & -a_{1 n} \\
0 & 1 & -a_{23} & \ldots & -a_{2 n} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & -a_{n-1 n} \\
-a_{n 1}-a_{n 2} & \ldots & -a_{n n-1} & 1
\end{array}\right)
\end{aligned}
$$

Then AU can be written as follows:
$A U=(I+U+R) A$
$=I-L-U+U-U L-U^{2}+R-R L-R U=$ $M_{U}-N_{U}$,
where
$M_{U}=(I-D-L-E+R-\dot{D}-\tilde{E}), N_{U}=F+U^{2}$
and D, E and F are the diagonal, strictly lower triangular and strictly upper triangular parts of UL, while \mathscr{D}^{\prime} and E^{\prime} are the diagonal, strictly lower triangular parts of $R(L+U)$, respectively. If M_{U} is nonsingular, the MGS iterative matrix is $T_{U}=$ $M_{U}^{-1} N_{U}$.

2- Preliminaries:

In this section, we present some notation, definitions and lemmas.

For $A=\left(a_{i, j}\right), B=\left(b_{i, j}\right) \in R^{n \times n}$, we write $A \geq B$ if $a_{i, j} \geq b_{i, j}$ holds for all $i, j=1,2, \ldots, n$. Calling A nonnegative if $A \geq 0\left(a_{i, j} \geq 0 ; i, j=1,2, \ldots, n\right) . \rho($. denotes the spectral radius of a matrix.

Definition 2.1. A matrix A is a L-matrix if $a_{i, j}>$ $0 ; i=j=1, \ldots, n \quad$ and $\quad a_{i, j} \leq 0 \quad$ for all $i, j=$ $1,2, \ldots, n ; i \neq j$. A nonsingular L-matrix A is a nonsingular M-matrix if $A^{-1} \geq 0$.

Definition 2.2. Let A be a real matrix. Then

$$
A=M-N
$$

is called a splitting of A if M is a nonsingular matrix. The splitting is called
(a) regular if $M^{-1} \geq 0$ and $N \geq 0$;
(b) weak regular if $M^{-1} \geq 0$ and $M^{-1} N \geq 0$;
(c) nonnegative if $M^{-1} N \geq 0$;
(d) M-splitting if M is a nonsingular M -matrix and $N \geq 0$.

Lemma 2.1 ([14)]. Let $A \in R^{n \times n}$ be nonnegative $n \times n$ matrix. Then
(a) A has a positive real eigenvalue equal to its spectral radius $\rho(A)$;
(b) for (A), there corresponds an eigenvector $X>0$;
(c) $\rho(A)$ is a simple eigenvalue of A ;
(d) $\rho(A)$ increases when any entry of A increases.

Definition 2.3. We call $A=M-N$ the Gauss-Seidel splitting of A, if $M=(I-L)$ is nonsingular and $N=$. In addition , the splitting is called
(a) Gauss-Seidel convergent if $\left(M^{-1} N\right)<1$;
(b) Gauss-Seidel regular if $M^{-1}=(1-L)^{-1} \geq 0$ and $N=U \geq 0$.

Lemma 2.2 ([17]). $A=M-N$ be an M-splitting of A. Then $\rho\left(M^{-1} N\right)<1$ if and only if A is a nonsingular M-matrix.

Lemma 2.3 ([15]). Let A and B be $n \times n$ matrices. Then AB and BA have the same eigenvalues, counting multiplicity.

Lemma 2.4([10]). Let A be a nonsingular M-matrix, and let
$A=M_{1}-N_{1}=M_{2}-N_{2}$ be two convergent splitting, the first one weak regular and the second one regular. If $M_{1}^{-1} \geq M_{2}^{-1}$, then
$\rho\left(M_{1}^{-1} N_{1}\right) \leq \rho\left(M_{2}^{-1} N_{2}\right)<1$.

3. Comparison Theorems

In this section, we compare such MGS method with the classical Gauss-Seidel method and the MGS method with the preconditioner $P_{U_{1}}=I+U$ ([11]), respectively.

To prove the theorems, we need some results.
We firstly prove that $A_{U_{1}}=M_{U_{1}}-N_{U_{1}}$ and $A_{U}=$ $M_{U}-N_{U}$ are both regular and Gauss-Seidel convergent splitting.

For the preconditioner $P_{U_{1}}=I+U$ the preconditioned matrix $A_{U_{1}}=(I+U) A$ can be written as
$A_{U_{1}}=M_{U_{1}}+N_{U_{1}}=(I-D-L-E)-\left(F+U^{2}\right)$.
In which D, E and F are defined as in section1. Hence, if $\sum_{K=i+1}^{n} a_{i, k} a_{k, i} \neq 1(i=1,2, \ldots, n-1)$, Then, the MGS iterative matrix $T_{U_{1}}$ for $A_{U_{1}}$ can be defined by
$T_{U_{1}}=M_{U_{1}}^{-1} N_{U_{1}}=(I-D-L-E)^{-1}\left(F+U^{2}\right)$
as $(I-D-L-E)^{-1}$ exists. There is the following result:

Lemma 3.1. Let $A=I-L-U$ be a nonsingular Mmatrix. Assume that $0 \leq \sum_{k=i+1}^{n} a_{i, k} a_{k, i}<1,1 \leq i \leq$ $n-1$. Then $A_{U_{1}}=M_{U_{1}}-N_{U_{1}}$ is regular and GaussSeidel convergent.

Proof. We observe that when $0 \leq \sum_{k=i+1}^{n} a_{i, k} a_{k, i}<$ $1,1 \leq i \leq n-1$, the diagonal elements of $A_{U_{1}}$ are positive and $M_{U_{1}}{ }^{-1}$ exists. It is known that (see ([18]) an L-matrix A is a nonsingular M-matrix if and only if there exists a positive vector y such that $A y>0$. By taking such y , the fact that $I+U \geq 0$ implies $A_{U_{1}} y=$ $(I+U) A y>0$. Consequently, the L-matrix $A_{U_{1}}$ is a nonsingular M-matrix which means $A_{U_{1}}^{-1} \geq 0$. Since $0 \leq \sum_{k=i+1}^{n} a_{i, k} a_{k, i}<1$ we have $(I-D)^{-1} \geq I$.

As strictly lower triangular matrix $L+E$ has nonnegative elements, by Neumann's series, the following inequality holds:
$M_{U_{1}}^{-1}=\left[I+(I-D)^{-1}(L+E)+\left\{(I-D)^{-1}(L+\right.\right.$ E) $\}^{2}+\cdots$

$$
\left.+\left\{(I-D)^{-1}(L+E)\right\}^{n-1}\right](I-D)^{-1} \geq 0
$$

On the other hand, it is easy to see that $N_{U_{1}}=F+$ $U^{2} \geq 0$.Thus,
$A_{U_{1}}=M_{U_{1}}-N_{U_{1}}$ is a regular and Gauss-Seidel convergent splitting by Definition 2.3 And Lemma 2.2.

Theorem 3.2. Let A be a nonsingular M-matrix, assume that $0 \leq \sum_{k=i+1}^{n} a_{i, k} a_{k, i}<1,1 \leq i \leq n-1$ and $0 \leq \sum_{k=1}^{n-1} a_{n, k} a_{k, n}<1$, then $A_{U}=M_{U}-N_{U} \quad$ is regular and Gauss-Seidel convergent splitting.

Proof. We observe that when $0 \leq \sum_{k=i+1}^{n} a_{i, k} a_{k, i}<$ $1,1 \leq i \leq n-1$ and $0 \leq \sum_{k=1}^{n-1} a_{n, k} a_{k, n}<1$, the
diagonal elements of A_{U} are positive and M_{U}^{-1} exists. Similar to the proof of Theorem 3.1, We can show that
$A_{U}=(I+U+R) A$ is a nonsingular M-matrix when A is a nonsingular M-matrix. Thus, $A_{U}^{-1} \geq 0$. When $0 \leq \sum_{k=i+1}^{n} a_{i, k} a_{k, i}<1,1 \leq i \leq n-1 \quad$ and $0 \leq$ $\sum_{k=1}^{n-1} a_{n, k} a_{k, n}<1$, we have $D+D^{\prime \prime}<I$, so that $(I-D-\tilde{D}) \geq 0$. Hence,

$$
\begin{aligned}
& M_{U}^{-1}=\left[(I-D-\tilde{D})-\left(L-R+E+E^{\prime}\right)\right]^{-1} \\
& =\left[I-(I-D-\tilde{D})^{-1}(L-R+E+\right. \\
& \text { É) }]^{-1}(I-D-\tilde{D})^{-1} \\
& =\left\{I+\left(I-D-\mathcal{D}^{-1}\left(L-R+E+E^{\prime}\right)+\right.\right. \\
& {\left[\left(I-D-\tilde{D}^{\prime}\right)^{-1}(L-R+E+E)\right]^{2}+\cdots} \\
& +\left[I-(I-D-D)^{-1}(L-R+E+\right. \\
& \text { É) } \left.]^{n-1}\right\}(I-D-D)^{-1} \geq 0
\end{aligned}
$$

It is easy to see that $N_{U}=F+U^{2} \geq 0$.
Therefore, $A_{U}=M_{U}-N_{U}$ is a regular and GaussSeidel convergent splitting by Definition 2.3 And Lemma 2.2.

Theorem 3.3. Let A be a nonsingular M-matrix. Then under the assumptions of Theorem 3.2, the following inequality holds:
$\rho\left(T_{U}\right) \leq \rho(T)<1$
where, $T=(I-L)^{-1} \mathrm{U}$ is the iterative matrix of the classical Gauss-Seidel method for $A=I-L-U$.

Proof. Since A is a nonsingular M-matrix, the classic Gauss-Seidel splitting $A=(I-L)-U$ of A is clearly regular and convergent.

For $M_{U}=I-D-L-E+R-\dot{D}-\dot{E}$ and $N_{U}=$ $F+U^{2}$ by Theorem 3.2 we know that $A_{U}=M_{U}-N_{U}$ is a Gauss-Seidel convergent splitting.

To compare $\rho\left(T_{U}\right)$ with (T), we have
$A=(I+U+R)^{-1} M_{U}-(I+U+R)^{-1} N_{U}$.

If we take $M_{1}=(I+U+R)^{-1} M_{U}$ and $N_{1}=$ $(I+U+R)^{-1} N_{U} \quad$, then $\rho\left(M_{1}^{-1} N_{1}\right)<1 \quad$ since $M_{U}^{-1} N_{U}=M_{1}^{-1} N_{1}$. Also, we have

$$
\begin{aligned}
& M_{1}^{-1}=M_{U}^{-1}(I+U+R) \\
&=(I-D-L-E+R-\tilde{D}-\tilde{E})^{-1}(I+U+R) \\
& \geq(I-D-L-E+R-\tilde{D}-\tilde{E})^{-1} \\
&=\left[I-\left(I-D-D^{\prime}\right)^{-1}(L-R+E+\right. \\
&\left.\tilde{E}^{\prime}\right]^{-1}(I-D-\tilde{D})^{-1} \\
& \geq\left[I-\left(I-D-\tilde{D}^{\prime}\right)^{-1}\left(L-R+E+E^{\prime}\right)\right]^{-1} \\
& \geq(I-L)^{-1},
\end{aligned}
$$

If follows from Lemma 2.4 that $\rho\left(M_{1}^{-1} N_{1}\right) \leq$ $\rho\left(M^{-1} N\right)<1$. Hence,
$\rho\left(M_{U}^{-1} N_{U}\right) \leq \rho\left(M^{-1} N\right)<1$, i.e., $\rho\left(T_{U}\right) \leq \rho(T)<$ 1.

Next, we give a comparison theorem between the MGS method with the preconditioners $\boldsymbol{P}_{\boldsymbol{U}}$ and $\boldsymbol{P}_{\boldsymbol{U}_{1}}$, respectively.

Theorem 3.4. Let A be a nonsingular M-matrix. Then under the assumptions of Theorem 3.2 and $\boldsymbol{a}_{n, j} \sum_{k=1}^{n-1} a_{n, k} a_{k, n} \leq \sum_{k=1}^{n-1} a_{n, k} a_{k, j}, \quad 1 \leq j \leq n-1$, we have

$$
\rho\left(T_{U}\right) \leq \rho\left(T_{U_{1}}\right)<1
$$

Proof. For the matrices $\boldsymbol{M}_{\boldsymbol{U}_{1}}, \boldsymbol{M}_{\boldsymbol{U}}, \boldsymbol{N}_{U_{1}}$ and $\boldsymbol{N}_{\boldsymbol{U}}$ in the splitting of matrices $\boldsymbol{P}_{\boldsymbol{U}_{1}} \boldsymbol{A}=\boldsymbol{M}_{\boldsymbol{U}_{1}}-\boldsymbol{N}_{\boldsymbol{U}_{1}}$ and $\boldsymbol{P}_{\boldsymbol{U}} \boldsymbol{A}=\boldsymbol{M}_{\boldsymbol{U}}-\boldsymbol{N}_{\boldsymbol{U}}$, they can be expressed in the partitioned forms as follows:
$M_{U_{1}}=I-D-L-E=\binom{\widehat{M} g}{u^{T} 1}$,
$\boldsymbol{M}_{\boldsymbol{U}}=\boldsymbol{M}_{\boldsymbol{U}_{1}}+\boldsymbol{R} \boldsymbol{A}=\left(\begin{array}{cc}\widehat{M} & 0 \\ V^{T} & v_{n}\end{array}\right)$,
$N_{U}=N_{U_{1}}=\left(\begin{array}{cc}\hat{N} & w \\ 0 & 0\end{array}\right)$,
where
$\widehat{\boldsymbol{M}}=\left(\widehat{\boldsymbol{m}}_{i, j}\right)$
,$\widehat{\boldsymbol{m}}_{i, j}=$
$\left\{\begin{array}{cc}\mathbf{0}, & \mathbf{1} \leq \boldsymbol{i}<j \leq n-1, \\ \mathbf{1}-\sum_{k=i+1}^{n} \boldsymbol{a}_{i, k} \boldsymbol{a}_{k, i}, & \boldsymbol{i}=\boldsymbol{j}, \\ \boldsymbol{a}_{i, j}-\sum_{k=i+1}^{n} \boldsymbol{a}_{i, k} \boldsymbol{a}_{\boldsymbol{k}, \boldsymbol{j}}, & j<i \leq n-1,\end{array}\right.$
$u^{T}=\left(a_{n, 1}, \ldots, a_{n, n-1}\right)$,
$V^{T}=\left(v_{1}, \ldots, v_{n-1}\right)$
$v_{j}=a_{n, j}-\sum_{k=1}^{n-1} a_{n, k} a_{k, j}(1 \leq j \leq n-1)$
$v_{n}=1-\sum_{k=1}^{n-1} a_{n, k} a_{k, n}$
$W=\left(\omega_{1}, \ldots, \omega_{n-1}\right)^{T}$
$\omega_{i}=-a_{i, n}+\sum_{k=i+1}^{n} a_{i, k} a_{k, n}(1 \leq i \leq n-1)$
and $\widehat{\boldsymbol{N}} \geq \mathbf{0}$ is an $(\boldsymbol{n}-\mathbf{1}) \times(\boldsymbol{n}-\mathbf{1})$ strictly upper triangular matrix.

Direct computation yields
$\boldsymbol{M}_{U_{1}}^{-\mathbf{1}}=\left(\begin{array}{cc}\widehat{M}^{-1} \\ -\boldsymbol{u}^{\widehat{M}^{-1}} & \mathbf{0} \\ \mathbf{1}\end{array}\right)$ and

$$
M_{U}^{-1}=\left(\begin{array}{cc}
\widehat{M}^{-1} & 0 \\
-v_{n}^{-1} V^{T} \widehat{M}^{-1} & v_{n}^{-1}
\end{array}\right)
$$

therefore,

$$
N_{U_{1}} M_{U_{1}}^{-1}=\left(\begin{array}{cc}
\widehat{T}_{U_{1}} W \\
0 & 0
\end{array}\right) \geq 0
$$

and

$$
N_{U} M_{U}^{-1}=\left(\begin{array}{c}
\bar{T}_{U} v_{n}^{-1} W \\
0
\end{array} 0\right.
$$

where $\widehat{\boldsymbol{T}}_{U_{1}}=\widehat{N} \widehat{\boldsymbol{M}}^{\mathbf{1}}-\boldsymbol{W} \boldsymbol{u}^{T} \widehat{\boldsymbol{M}}^{-1}$ and $\overline{\boldsymbol{T}}_{\boldsymbol{U}}=\widehat{\boldsymbol{N}} \widehat{\boldsymbol{M}}^{\mathbf{1}}-$ $\boldsymbol{W} \boldsymbol{v}_{\boldsymbol{n}}^{-1} \boldsymbol{V}^{\boldsymbol{T}} \widehat{\boldsymbol{M}}^{-1}$. Since both the lower-right corner of $\boldsymbol{N}_{\boldsymbol{U}} \boldsymbol{M}_{\boldsymbol{U}}^{-\mathbf{1}}$ and $\boldsymbol{N}_{\boldsymbol{U}_{1}} \boldsymbol{M}_{U_{1}}^{-\mathbf{1}}$ have zeros, $\boldsymbol{\rho}\left(\boldsymbol{N}_{\boldsymbol{U}} \boldsymbol{M}_{\boldsymbol{U}}^{-\boldsymbol{1}}\right)$ and $\boldsymbol{\rho}\left(\boldsymbol{N}_{U_{1}} \boldsymbol{M}_{U_{1}}^{-1}\right)$ exist in \bar{T}_{U} and $\widehat{\boldsymbol{T}}_{U_{1}}$, respectively. That is, $\rho\left(N_{U} M_{U}^{-1}\right)=\rho\left(\bar{T}_{U}\right)$ and $\rho\left(N_{U_{1}} M_{U_{1}}^{-1}\right)=\rho\left(\widehat{T}_{U_{1}}\right)$. By simple computation, we know that $\bar{T}_{U} \leq \widehat{T}_{U_{1}}$ under the assumption $\boldsymbol{a}_{n, j}-\sum_{k=1}^{n-1} \boldsymbol{a}_{n, k} \boldsymbol{a}_{k, n} \leq$ $\sum_{k=1}^{n-1} \boldsymbol{a}_{\boldsymbol{n}, \boldsymbol{k}} \boldsymbol{a}_{\boldsymbol{k}, \boldsymbol{j}}, \mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}-\mathbf{1}$. Hence by Lemma 2.1 , we have

$$
\rho\left(N_{U} M_{U}^{-1}\right)=\rho\left(\bar{T}_{U}\right) \leq \rho\left(\widehat{T}_{U_{1}}\right)=\rho\left(N_{U_{1}} M_{U_{1}}^{-1}\right) .
$$

Therefore, by Lemma 2.3 we immediately know that

$$
\begin{gathered}
\rho\left(M_{U}^{-1} N_{U}\right)=\rho\left(N_{U} M_{U}^{-1}\right) \leq \rho\left(N_{U_{1}} M_{U_{1}}^{-1}\right)= \\
\rho\left(M_{U_{1}}^{-1} N_{U_{1}}\right), \text { which means that } \rho\left(T_{U}\right) \leq \rho\left(T_{U_{1}}\right)
\end{gathered}
$$

4. Comparison Theorems

In this section, we discuss a comparison with $\boldsymbol{P}_{\boldsymbol{U}}$ and $\boldsymbol{P}_{\boldsymbol{R}}$. The comparison result show that the preconditioner $\boldsymbol{P}_{\boldsymbol{U}}$ is better than $\boldsymbol{P}_{\boldsymbol{R}}$ for sloving the preconditioned linear system (2).

Theorem 4.1. Let \boldsymbol{A} be a nonsingular M-matrix. If $\mathbf{0} \leq \sum_{k=i+1}^{n} \boldsymbol{a}_{i, k} \boldsymbol{a}_{k, i}<\mathbf{1}, \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}-\mathbf{1} \quad$ and $\quad \mathbf{0} \leq$ $\sum_{k=1}^{n-1} \boldsymbol{a}_{n, k} \boldsymbol{a}_{k, n}<1 \quad$ and $\quad \mathbf{0} \leq \boldsymbol{a}_{i, k_{i}} \boldsymbol{a}_{\boldsymbol{k}_{i} i}<1, \mathbf{1} \leq i \leq$ $\boldsymbol{n}-\mathbf{1}$, then $\rho\left(\boldsymbol{T}_{U}\right) \leq \boldsymbol{\rho}\left(\boldsymbol{T}_{R}\right)<\mathbf{1}$

Proof. For $\boldsymbol{M}_{\boldsymbol{U}}=\boldsymbol{I}-\boldsymbol{D}-\boldsymbol{L}-\boldsymbol{E}+\boldsymbol{R}-\dot{\boldsymbol{D}}-\tilde{\boldsymbol{E}}$ and $\boldsymbol{N}_{\boldsymbol{U}}=\boldsymbol{F}+\boldsymbol{U}^{\mathbf{2}}$ by Theorem 3.2 we know that $\boldsymbol{A}_{\boldsymbol{U}}=\boldsymbol{P}_{\boldsymbol{U}} \boldsymbol{A}=\boldsymbol{M}_{\boldsymbol{U}}-\boldsymbol{N}_{\boldsymbol{U}}$ is a Gauss-Seidal convergent splitting. For $\boldsymbol{M}_{\boldsymbol{R}}=\boldsymbol{I}-\dot{\boldsymbol{D}}-\boldsymbol{L}-\boldsymbol{E}+\boldsymbol{R}-\dot{\boldsymbol{D}}-\boldsymbol{E}$ and $\boldsymbol{N}_{\boldsymbol{R}}=\boldsymbol{U}-\boldsymbol{S}_{\max }+\dot{\boldsymbol{F}}+\boldsymbol{S}_{\max } \boldsymbol{U}$ that $\dot{\boldsymbol{D}}, \dot{\boldsymbol{E}}$ and $\dot{\boldsymbol{F}}$ are respectivly the diagonal, strictly lower triangular and strictly upper triangular parts of $\boldsymbol{S}_{\max } \boldsymbol{L}$, and $\overline{\boldsymbol{D}}$ and $\dot{\boldsymbol{E}}$ are the diagonal, strictly lower triangular parts of $\boldsymbol{R}(\boldsymbol{L}+\boldsymbol{U})$, respaectivly. From [4] we know that $\boldsymbol{A}_{\boldsymbol{R}}=\boldsymbol{P}_{\boldsymbol{R}} \boldsymbol{A}=\boldsymbol{M}_{\boldsymbol{R}}-\boldsymbol{N}_{\boldsymbol{R}}$ is a Gauss-Seidel convergant splitting. To compare $\boldsymbol{\rho}\left(\boldsymbol{T}_{\boldsymbol{U}}\right)$ with $\boldsymbol{\rho}\left(\boldsymbol{T}_{\boldsymbol{R}}\right)$, we consider the following splitting of A :
$A_{U}=P_{U} A=M_{U}-N_{U}$
$(I+U+R) A=M_{U}-N_{U}$
$A=(I+U+R)^{-1} M_{U}-(I+U+R)^{-1} N_{U}$
that we take $\boldsymbol{M}_{\mathbf{1}}=(\boldsymbol{I}+\boldsymbol{U}+\boldsymbol{R})^{\mathbf{- 1}} \boldsymbol{M}_{\boldsymbol{U}}$ and $\boldsymbol{N}_{\mathbf{1}}=$ $(I+U+R)^{-1} N_{U}$
and
$A_{R}=P_{R} A=M_{R}-N_{R}$
$\left(I+S_{\text {max }}+R\right) A=M_{R}-N_{R}$
$A=\left(I+S_{\max }+R\right)^{-1} M_{R}-\left(I+S_{\max }+R\right)^{-1} N_{R}$
If we take $\boldsymbol{M}_{2}=\left(\boldsymbol{I}+\boldsymbol{S}_{\max }+\boldsymbol{R}\right)^{-\mathbf{1}} \boldsymbol{M}_{\boldsymbol{R}}$ and $\boldsymbol{N}_{2}=$ $\left(I+S_{\max }+R\right)^{-1} N_{R} \quad$, then $\rho\left(M_{1}^{-1} N_{1}\right)<1$ and $\rho\left(M_{2}^{-1} N_{2}\right)<1 \quad$ since $M_{U}^{-1} N_{U}=M_{1}^{-1} N_{1} \quad$ and $M_{R}^{-1} N_{R}=M_{2}^{-1} N_{2}$.

Then $A=\boldsymbol{M}_{\mathbf{1}}-\boldsymbol{N}_{\mathbf{1}}=\boldsymbol{M}_{\mathbf{2}}-\boldsymbol{N}_{\mathbf{2}}$ are two convergant splittings.

Since matrices $\boldsymbol{L}, \boldsymbol{D}, \dot{\boldsymbol{D}}, \boldsymbol{E}, \boldsymbol{E}, \boldsymbol{R}, \dot{\boldsymbol{D}}$ and $\boldsymbol{E}^{\boldsymbol{E}}$ are positive and $\boldsymbol{D} \geq \dot{\boldsymbol{D}}$ and $\boldsymbol{E} \geq \dot{\boldsymbol{E}}$, we have $-\boldsymbol{D} \leq-\boldsymbol{D}$ and $-\boldsymbol{E} \leq-\boldsymbol{E}$. Then the following inequality holds:

$$
I-D-L-E \leq I-\dot{D}-L-E ́
$$

and we have:
$I-D-L-E+R-\dot{D}-\tilde{E} \leq I-\dot{D}-L-\hat{E}+R-$向-

Therefore
$(I-D-L-E+R-\dot{D}-\tilde{E})^{-1} \geq(I-\dot{D}-L-$ $\dot{E}+\boldsymbol{R}-\dot{\boldsymbol{D}}-\tilde{E})^{-\mathbf{1}}$

Also, $\boldsymbol{P}_{\boldsymbol{U}}=\boldsymbol{I}+\boldsymbol{U}+\boldsymbol{R}$ and $\boldsymbol{P}_{\boldsymbol{R}}=\boldsymbol{I}+\boldsymbol{S}_{\max }+\boldsymbol{R}$ are positive matrices and we have

$$
\begin{equation*}
I+U+R \geq I+S_{\max }+R \tag{6}
\end{equation*}
$$

from (5) and (6) the following relation holds:
$(I-D-L-E+R-\dot{D}-\tilde{E})^{-1}(I+U+R)$
$\geq(I-\dot{D}-L-\dot{E}+R-\dot{D}-\tilde{E})^{-1}\left(I+S_{\max }+R\right)$
and we know that
$M_{1}^{-1}=(I-D-L-E+R-\tilde{D}-\tilde{E})^{-1}(I+U+R)$
and
$M_{2}^{-1}=(I-\dot{D}-L-\tilde{E}+R-\dot{D}-\tilde{E})^{-1}\left(I+S_{m a x}+\right.$ R)

Then, from (7), $\boldsymbol{M}_{\mathbf{1}}^{\mathbf{- 1}} \geq \boldsymbol{M}_{\mathbf{2}}^{\mathbf{- 1}}$ it follows from Lemma 2.4 that
$\rho\left(M_{1}^{-1} N_{1}\right) \leq \rho\left(M_{2}^{-1} N_{2}\right)<1$. Hence, $\left(M_{U}^{-1} N_{U}\right) \leq$ $\rho\left(M_{R}^{-1} N_{R}\right)<1$, i.e., $\rho\left(T_{U}\right) \leq \rho\left(T_{R}\right)<1$.

5. Numerical Examples

Example 5.1. Consider the following matrix,

$$
A=\left(\begin{array}{ccccc}
1 & -0.2 & -0.3 & -0.1 & -0.2 \\
-0.1 & 1 & -0.1 & -0.3 & -0.1 \\
-0.2 & -0.1 & 1 & -0.1 & -0.2 \\
-0.2 & -0.1 & -0.1 & 1 & -0.3 \\
-0.1 & -0.2 & -0.2 & -0.1 & 1
\end{array}\right)
$$

by computation, we have
$\rho\left(M^{-1} N\right)=0.460779>\rho\left(M_{U}^{-1} N_{U}\right)=0.156956$ and
$\rho\left(M_{U_{1}}^{-1} N_{U_{1}}\right)=0.186007>\rho\left(M_{U}^{-1} N_{U}\right)=$ 0.156956 and

$$
\rho\left(M_{R}^{-1} N_{R}\right)=0.257251>\rho\left(M_{U}^{-1} N_{U}\right)=
$$ 0.156956 .

Example 5.2. Let the coefficient matrix A given by

\[

\]

Obviously, from numerical results, we have $\boldsymbol{\rho}\left(\boldsymbol{T}_{U}\right) \leq$ $\boldsymbol{\rho}\left(\boldsymbol{T}_{\boldsymbol{R}}\right)$ and
$\boldsymbol{\rho}\left(\boldsymbol{T}_{U}\right) \leq \boldsymbol{\rho}\left(\boldsymbol{T}_{U_{1}}\right) \leq \boldsymbol{\rho}(\boldsymbol{T}), \quad$ we have $\boldsymbol{\rho}\left(\boldsymbol{T}_{U}\right)=$ $0.414255, \boldsymbol{\rho}\left(\boldsymbol{T}_{R}\right)=0.478073, \quad \boldsymbol{\rho}\left(\boldsymbol{T}_{\boldsymbol{U}_{1}}\right)=$ 0.421223 and $\boldsymbol{\rho}(\boldsymbol{T})=0.670704$.

References

[1] A. D. Gunawardena, S. K. Jain, L. Snyder, Modified Itrative Methods For Consistent Linear Systams, Linear Algebra Appl. 154-156(1991)123-143.
[2] H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A Comparison Theorem For The Iterative Mathod With The Preconditioner $\left(\boldsymbol{I}+\boldsymbol{S}_{\max }\right)$, J. Comput. Appl. Math. 145(2002)373-378.
[3] J. P. Milaszewicz, Impriving Jacobi And GaussSeidel Iterations, Linear Algabra Appl. 93 (1987)161-170.
[4] B. Zheng, S. X. Miao, Two New Modified GauusSeidel Methods For Linear System With M-Matrices, J. Comput. Appl. Math. 233(2009)922-930.
[5] T. Kohono, H. Kotakemori, H. Niki, Improving Th Modified Gauss-Seidel Method For Z-Matrices, Linear Algabra Appl. 267(1997)113-123.
[6] H. Kotakemori, H. Niki, N. Okamoto, Accerated Iterative Method For Z-Matrices, J. Comput. Appl. Math. 75(1996)87-97.
[7] H. Niki, K. Harada, M. Morimoto, M. Sakakihara, The Survey Of Preconditioners Used For Accelerating The Rate Of Convergence In The Gauss-Seidel Method, J. Comput. Appl. Math. 164-165(2004)587-600.
[8] W. Li, A Note On The Preconditioned GaussSeidal (GS) Method For Linear Systems, J. Comput. Appl. Math. 182(2005)81-90.
[9] J. H. Yun, A Note On Preconditioned AOR Method For L-Matrices, J. Comput. Appl. Math. 220(2008)13-16.
[10] Z. I. Wozniki, Nonnegative Splitting Theory, Japan J. Industrial Appl. Math. 11(1994)289 342.
[11] M. Usui, H. Niki, T. Kohno, Adaptive GaussSeidal Method For Linear Systyems, Int. J. Comput. Math. 51(1994)119-125.
[12] H. Wang, Y.T. Li, A. New Preconditioned AOR Iterative Method For L-Matrices, J. Comput. Appl. Math. 229(2009)47-53.
[13] H. Niki, T. Kohono, M. Morimoto, The Preconditioned Gauss-Seidal Method Faster Than The SOR Method, J. Comput. Appl. Math. 219(2008)59-71.
[14] R. S. Varga, Matrix Iterative Analysis, Pre Ntice, Englewood Cliffs, Nj, 1981.
[15] F. Zhang, Matrix Theory, Springer, 1999.
[16] D. M. Young, Itreative Solution Of Large Linear System, Academic Press, New York, 1971.
[17] W. Li, W. W. Sun, Modified Gauss-Seidal Type Methods And Jacobi Type Methods FOR Z-Matrices, Linear Algebra Appl. 317(2000)227-240.
[18] A. Berman, R. J. Plemmons, Nonnegative Matrices In The mathematical Sciences, Academic Press, New York, 1979.
[19] Y. Z. Song, Comparisons Of Nonnegative Splittings Of Matrices, Linear Algebra Appl. 154 -156(1991)433-455.
[20] H. Schneider, Theorems On M-Splittings Of A Singular M-Matrix Which Dapend On Graph Structure, Linear Algebra Appl. 58(1984)407424.

