Introducing an Economic Plan of Optimum Designing in the Joist Floor Slabs Construction

Dr. Ahmad Akbarlou

Faculty of Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran E-mail: Ahmad.akbarlou@ymail.com

Abstract: In the present paper, considering joisted floor overuse in most of the residential, office and other types of buildings, numerous researches have been carried out into technical and theoretical problems. The results have been compiled as article and it has become clear that there is a drastic gap concerning financial matters of a variety of structures in building regulations. A steel building with joisted floor was considered to commence this technical and economic research. The effect of shifting floor framing direction of the joists on floor spans has been calculated and compared (frist on big span, next on small span) in the amount of used steel including the main steel girder weight and used bar weight in joist and the total cost of floor construction calculated according to it. The results show that in the case of building with joisted floor along the big span of floor span (from both direction of framing), 10% - 39% and 8% - 28% are saved in the case of steel use and floor construction costs, respectively. According to statistics concerning the city of Tabriz, 22000 tons of steel on average and about 440 billion Rials that is equal to 19.8 million \$ would be saved in the cost of floor construction. These amounts of saving for the whole country(for Iran) are 580000 tons of steel and 12000 billion Rials that is equal to 540 million \$.

[Ahmad Akbarlou. Introducing an Economic Plan of Optimum Designing in the Joist Floor Slabs Construction. *Life Sci J* 2012;9(4):3626-3633]. (ISSN: 1097-8135). <u>http://www.lifesciencesite.com</u>. 537

Key words: Joisted floor, optimal choice of framing direction, optimal steel use, financial saving.

1. Introduction

Utilizing joisted floor in country buildings is a common task because of its advantages such as using less steel, concrete, framing, possibility of manual installation, being thermal insulator, less weight, quick installation, and reasonable strength.

This study deals with the uncontrolled steel use in order to save financial expenses in building industry. This seems to be necessary because of the increasing demands of the society for appropriate building construction with less total cost.

On the other hand, because of insufficient technical and economical studies in the field of building construction methods mainly residential buildings, this research method may play a role in changing research issues and methods. Although quality and strengthen of structures, have been improved, it is obvious that less attention has been paid to the engineering economy. So far, no regulations or codes have been compiled and published by technical organizations or legal authorities. Moreover, uncontrolled and exceptional use of steel in country buildings, leading to increasing need for steel importation and expense increment, shows this research matters importance.

In the present paper, it has been proposed that related organizations such as Housing and Urbanization Organization, Engineering Constitution, etc., should care about economic matters in designing and constructing of building in addition to inspection problems, quality control and theoretical problems through compiling necessary regulations and codes.

2. Research Method

A residential building with steel structure and joisted floor, according the following plan, in two modes of framing, i.e. modes a and b, has been selected. After floor designing, the weight of used steel in the main girder and bar of the joist estimated and total weight of used steel has been calculated and compared in two cases of a and b. Then the costs of floor construction including the cost of main girder and joisted floor have been calculated and compared with to the price list of the year 2010 (the last official prices) that exchanged to the prices of year 2012.

In floor calculations, the design of steel girder considering vertical loads has been done by allowable stress method and based on Iranian steel code. The joist has been designed by ultimate strength method based on the code CP 110, rule 54/1405, dated on 97/06/12 (leaflet no.94) published by strategic planning and supervision organization.

Case a) the main steel girder in axes A and B, and the direction of floor joist in L1 direction are as following figure $(L_1>L_2)$

Case b) the main steel girder in axes 1 and 2, and the direction of floor joist in L2 direction are as following figure $(L_1>L_2)$

4- Floor elements design and total cost of their preparation and construction.

The study continues as follows with an example. $L_1=5 \text{ m}$, $L_2=3 \text{ m}$

 $PL=650 \text{ kg/m}^2$, $LL=200 \text{ kg/m}^2$

Case a:

1-1-a: Design of steel girder in case (a), with a span of $L_2=3m$.

 $G_1 = 6$? 8.8 = 113 kg the weight of main steel girders .

1-2- a: Design of the floor joist (tensile bar) in case (a), with a span of $L_1=5m$.

е	8
$Z = 0.9h_e$	Elastic arm
f _{cu} compressi	ive stress of the joist concrete
t = 20 cm	The distance of stirrups
$f_y = 4200 \frac{kg}{cm^2}$	tesile bar yield stress
$\sigma_a = 1400 \frac{\text{kg}}{\text{cm}^2}$	Stirrup allowable stress
$f_c = 200 \frac{\text{kg}}{\text{cm}^2}$	28- day concrete compression

strength	
$\alpha = 58^{\circ}$	Stirrup's angle
B = 50 cm	Distance of the joists
$A_1 = A_S =$	tensile bar Area

Design based on the USD (ultimate stress design) method using CP110 code:

2-2-a: Design of joist stirrups using ASD (Allowable stress design) method

$$q' = (DL + LL)? \quad .5 = 425 \frac{\text{kg}}{\text{m}}$$

$$\alpha = 58^{\circ} \qquad V_{\text{max}} = \frac{q' L}{2} = 425? \frac{5}{2} \quad 1063 \text{ kg}$$

$$\tau = \frac{V_{\text{max}}}{Z.b_{\text{W}}} = \frac{1063}{0.9? \quad 3? \quad 0} = 5.14$$

 $5.14 > 4.2kg/cm^2$ Stirrup is need

$$A_{2} = \frac{V.t}{Z.\sigma_{0}(sina + cosa)}$$

$$A_{2} = \frac{1063 \times 20}{1400 \times 0.9 \times 23 \times (0.85 + 0.53)}$$

$$A_{2} = 0.53 cm^{2} \text{ use } \Phi 8$$
3-2-a: Design of compressive bar accord

3-2-a: Design of compressive bar according to the code.

 A_3 : use $\Phi 10$

4-2-a: Thermal bar perpendicular to joist direction.

$$A_{4} = \frac{1.75}{1000}? \text{ Concrete slab Area}$$
$$A_{4} = \frac{1.75}{1000}? \quad 00? = 0.875 \text{ cm}^{2}$$
use $4\Phi6 / \text{m}$

5-2-a: design of thermal bar parallel to joist direction.

$$A_5 = \frac{1.25}{1000}$$
? 00? = 0.625 cm²
use $2\Phi6 / m$

6-2-a: Shear reinforcing bar

 A_6 : use $\Phi 8$ L = 75cm 7-2-a: Negative moment bar

$$A_7 = 0.15A_S$$

 $A_7 = 0.15?$? .54 = 0.46 cm²

use $\Phi 8$ L = 120 cm 8-2-a: Joist rib bar Live load q'' = 200 < 350 , L > 4 m

$$A_8 = \frac{1}{2}A_S = \frac{1}{2}?$$
 ? .54 = 1.54 use 2 Φ 10

9-2-a: Calculating the weight of bar used in joist

POS	ϕ / Φ	N	L	G (kg/m)	W (kg)
A ₁	$\Phi 14$ AIII	12	5	1.21	72.6
A ₂	Φ8 AI	6	5×2.5	0.395	30
A ₃	Φ10 AII	6	5	0.617	18.5
A4	Φ6 AI	20	3	0.222	13.3
A ₅	Φ6 AI	6	5	0.222	6.7
A ₆	Φ8 AI	12	0.75	0.395	3.6
A ₇	$\Phi 8 \text{ AII}$	12	1.2	0.395	5.7
A ₈	Φ10 AII	2	3	0.617	3.7

Table 1: Calculating the weight of bar

Weight (AI = 54 kg, AII = 28 kg, AIII = 73 kg) Total weight of bar = 113 kg Total steel use = 155kg Case b:

1-1-b: design of steel girder in mode b with span of $L_1=5m$.

q = 850? .5 = 1275 kg/m
M =
$$\frac{1275?}{8}$$
 = 3984 kg.m
W = 252cm³ \Rightarrow use IPE22
G₂ = 10? 6.2 = 262 kg

10-2-a: Calculating the	e cost of providing	g and construction	ng the floor	r using Irani	an price list o	of construction
field published in 2009	(the last official pr	ice list)				
Table 2:						

Row	Operation description	number of price list	unit	amoun t (kg)	unit price (Rial)	Total price (Rial)
1	Providing and executing of AI bar	070101	kg	54	8980	484920
2	Providing and executing of AII bar	070201	kg	28	8000	224000
3	Providing and executing of AIII bar	070205	kg	73	6360	464280
4	Additional price of joist truss	070301	kg	122	145	17690
5	Providing and executing of joisted floor whit 25 cm thickness	100102	m ²	15	122000	1830000
6	Providing and executing of bearing girder	090211	kg	113	8830	997790

Sum of total value=4018680× 1.8 = 7233624

The exchange coefficient of prices of year 2010 - 2012 based on the cost coefficient and daily prices = 1.8

1-2-b: design of floor joist (tensile bar) in mode b with span of $L_2=3m$.

$$q = 615 \frac{\text{kg}}{\text{m}} \quad M = \frac{615?^{2}}{8} = 692 \text{ kg.m}$$
$$M_{\text{u}} = 0.87? \quad 200 \text{ fr} \quad \text{s}?(3-2.5)$$
$$A_{1} = A_{\text{s}} = 0.92 \text{ cm}^{2}$$
use 2\Phi \text{ AIII}

2-2-b: design of joist stirrup using ASD (Allowable stress design)method.

q' = 425
$$\frac{\text{kg}}{\text{m}}$$

V = 425? $\frac{3}{2}$ 638 kg
Shear stress :

$$\tau = \frac{638}{0.9? \quad 3? \quad 0} = 3.1 < 4.2 \frac{kg}{cm^2}$$

According to the code :

$$A_{\min} = 0.0015 b_{W} t = 0.0015? 0? 0 = 0.3 cm^{2}$$

use $A_2 = \Phi 6$ AI

3-2-b: design of compressive bar according to the code.

$$A_3 : \Phi 8 AII$$

4-2-b: thermal bar perpendicular to joist

$$A_4 : 4\Phi6 /_m AI$$

5-2-b: design of thermal bar parallel whit joist

A₅ : $2\Phi 6 / m$ AI **6-2-b: shear reinforcing bar** A₆ : $\Phi 8$ AI L = 75 cm **7-2-b: negative moment bar** A₇ : $0.15A_1 = 0.15$? ? .5 = 0.15 cm^2 use $\Phi 6$ AII **8-2-b: Joist's rib bar**:

according to the code joist's rib is not need. L = 3 < 4

9-2-b: Calculating the weight of the bar used in the joist.

Table 5								
POS	ϕ / Φ	N	L	G (kg/m)	W (kg)			
A_1	Φ8 AIII	20	3	0.395	24			
A_2	Φ6 AI	10	3×2.5	0.222	16.7			
A ₃	Φ10 AII	10	3	0.395	12			
A_4	Φ6 AI	12	5	0.222	13.3			
A_5	Φ6 AI	10	3	0.222	6.7			
A ₆	Φ8 AI	20	0.75	0.395	5.9			
A_7	Φ6 AII	20	0.8	0.222	3.6			

(AIII = 24 kg) ε (AII = 16 kg) ε (AI = 43 kg) Total weight of bar = 83 kg

10-2-b: Calculating the cost	t of providing ន	and constructing	the floor w	vith Iranian	price list	of construction
field published in 2009						

Table 2

Table 4 Row number of price amount unit price **Total price Operation description** unit (Rial) list (kg) (Rial) 070101 386140 1 Providing and executing of AI bar kg 43 8980 2 Providing and executing of AII bar 070201 kg 16 8000 128000 3 Providing and executing of AIII bar 070205 kg 24 6360 152640 Additional price of joist truss 53 4 070301 kg 145 7685 Providing and executing of joisted floor whit 25 cm 5 100102 15 122000 1830000 kg thickness 090211 8830 Providing and executing of bearing girder kg 262 2313460 6 Sum of total price with operating overhead coefficient (Rial) = (4817925×1.8=8672265)

The exchange coefficient of prices of year 2010-2012 based on the cost coefficient and daily prices = 1.8. In the table 5 the weight of steel use for different spans is presented after designing and calculating like upper method.

Table 5: the weight of used steel and the	percent of the steel use reduction in 10 modes with different spans
and two different modes of joist position	a & b).

Row	Span of joist (m)	Span of the main girder (m)	Weight of used bar (kg)	Weight of used steel (kg)	Sum of the weight of steels (kg)	Decrease percent of steel use	
	3	4	71	179	250		1 22
1	4	3	83	113	196	%22	1.55
2	3	5	83	262	345		1.67
2	5	3	155	113	268	%22	1.07
2	3	6	105	433	538		2
3	6	3	196	134	330	%39	2
	3	7	123	591	714		2 22
4	7	3	315	134	449	%37	2.33
_	4	5	164	361	525		1.25
5	5	4	196	246	442	%16	1.23
(4	6	197	506	703		1.5
0	6	4	262	246	508	%28	1.5
7	4	7	230	687	917		1 75
/	7	4	420	289	709	%23	1.75
0	5	6	293	589	882		1.2
ð	6	5	320	422	742	%16	1.2
0	5	7	342	799	1141		1.4
y	7	5	525	491	1016	%11	1.4
10	6	7	460	928	1388		1 17
10	7	6	624	685	1300	%6	1.17

In the plan of the joists and girders, L_2 is the bigger span and L_1 is the smaller span.

Row	Joist's span (m)	main girder span (m)	Total cost of the floor (Rial)	Percent of the cost decrease		
1	3	4	5820327		1 33	
1	4	3	4951330	%15	1.55	
2	3	5	7829127		1.67	
2	5	3	6530355	%17	1.07	
2	3	6	7052700		n	
3	6	3	11327326	%28	2	
4	3	7	12495395		2 22	
4	7	3	11041051	%24	2.33	
=	4	5	11389071		1.25	
5	5	4	9952431	%13	1.23	
6	4	6	14768331		15	
0	6	4	11821657	%20	1.5	
7	4	7	18769642		1.75	
1	7	4	16702715	%11	1.75	
0	5	6	18448475		1.2	
0	6	5	16472216	%11	1.2	
0	5	7	24975127		1.4	
,	7	5	22950756	%8	1.4	
10	6	7	30274466		1.17	
10	7	6	27956667	%8	1.1/	

Table 6: calculating the cost of construction of the floor.

In the plan of the joists and girders, L_2 is the bigger span and L_1 is the smaller span.

Diagram 1: the curve of steel use.

The upper diagram indicates that in all cases when joist is located in bigger span, the use of steel decreases considerablely.

Diagram 2: The curve of steel use reduction with the variation of L₂/L₁

Floor construction cost reduction percent (FCCDP) 30% floor cost reduction 25% 20% 15% 10% 5% 0% 1.17 1.2 1.25 2 2.33 1.33 1.4 1.5 1.67 1.75 ت 11/12 در ص^Eاهس سقف 8% 11% 13% 15% 8% 20% 17% 28% 11% 24% (FCCDP)

As it is seen, when the ratio of L_2/L_1 increases, steel use percent decreases.

Diagram 3: Floor cost reduction percent (FCCDP)

As the above diagram indicates, by increasing L_2/L_1 ratio, floor construction cost percent decreases (except two cases).

5. Conclusions

- All the studied cases being the common spans used in joisted floor have been compared with the obtained results on diagram (1) which indicates that when the joist is constructed on the big span, steel use decreases considerably.
- 2) Considering diagram 2, it can be observed that when L_2/L_1 (ratio of big span to small span) increases, the steel use decreases, and when $L_2/L_1= 2$, the maximum decrease can be observed.
- 3) Considering diagram (3), it can be deduced that in all cases when the joist is designed on the big span, the cost of joisted floor construction decreases.
- Based on the obtained results on diagram (3), when L₂/L₁ increases, the cost decreases; and the maximum decrease is when L₂/L₁=2.
- 5) Economical result of the research:
- The average amount of steel reduction (22%) and the average amount of the floor cost reduction (16.5%) can be obtained from diagram (3).

Through calculating the average amount of used steel in joisted floor which is 26 kg/m^2 , 6.4 kg less steel will be used per squre meter of joisted floor. Therefore, according to the statistics on average building construction of the one year for a city such as Tabriz, there has been more than 3500000 square meter and assuming 98% of construction whit joisted floor, 22000 tons of steel

11/16/2012

would be saved which amounts to 440 billion Rials saving(equal to 20 million \$). Thus, for the whole country(for Iran) it would be 580000 tons of steel use reduction and 12000 billion Rials saving(equal to 540 million \$). With such saving for a city such as Tabriz, we can construct 1500 residential building units, and for the whole country about 40000 residential building units, each unit with 80 m² of area.

Therefore, with serious attention to this plan, there will be less need to steel importation and there will be huge savings on cost of constructing the buildings.

References:

- 1. Iranian building national code, code number: 10, "designing and constructing steel structure Buildings".
- 2. Iranian price list of construction field published in 2009, "mporg" organization, http://tec.mporg.ir.
- 3. precast joist floors, published from "mporg" organization, <u>http://tec.mporg.ir</u>.
- 4. Engineering constitution organization of East Azerbayjan in Iran home page for deriving the statistics of buildings construction in tabriz Iran (http://azarnezam.ir).
- 5. Statistical center of Iran for deriving the buildings constructions statistics of in Iran published in 2009 (http://sci.org.ir).
- 6. Leaflet no. 94, published from "mporg" organization in 1997.(<u>http://tec.mporg.ir</u>).