Meta Malmquist Index Based On Trade Offs Models in Data Envelopment Analysis

Parisa Firoozi shahmirzadi; Gholamreza Jahanshahloo
${ }^{1,2}$ Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
Email:Parisa.Firoozi@gmail.com

Abstract

The Trade Offs approach is an advanced tool for the improvement of the discrimination of Data Envelopment Analysis (DEA) models, Meta Malmquist Index was defined by Maria Portella and et. al (2008). In this paper we compute the Meta Malmquist Index in Trade Offs model in DEA and we compare, obtaining results, of Meta Malmquist Index in different models of DEA, Variable Return to Scale (VRS), Constant Return to Scale (CRS) and Trade Offs (T-O). Numerical example is given for the purpose of illustration and we will show the management science is effective on efficiency of Decision Making Units (DMUs). The main advantage this index is that, it is circular. [Paris Firoozi shahmirzadi, Gholamreza Jahanshahloo. Meta Malmquist Index Based On Trade Offs Models in Data Envelopment Analysis. Life Sci J 2012;9(4):2875-2883] (ISSN:1097-8135). http://www.lifesciencesite.com. 422

Keywords: Data Envelopment analysis, Trade Offs, Meta Malmquist Index, Meta Efficiency, Meta Frontier.

1. Introduction

Data Envelopment Analysis (DEA) is a mathematical programing technique that measures the relative efficiency of decision making units (DMUs) with multiple inputs and outputs, Charnes et. al (1978). First proposed DEA as an evaluation tool to measure and compare the relative efficiency of DMUs, their model assumed constant return to scale (CRS, the CCR model). It was developed for variable return to scale (VRS, the BCC model) by Banker et. al (1984). Podinovski suggests the incorporation of production Trade Offs in to DEA models, under this circumstance (Podinovski 2004), when we use Trade Offs in our models, the original technology expands to include the new area, Podinovski and et. al (2004) show that the production possibility set (PPS), generated by the traditional DEA axioms, may not include all the producible production points, the PPS generated by the DEA models is only the subset of the PPS with Trade Offs. Podinovski also describes the theatrical development of Trade Offs and demonstrated that Trade Offs can improve the traditional meaning of efficiency as a radial impronment factor for input or outputs (Podinovski, 2007a, 2007b). The Malmquist Index is the most important index for measuring the relative productivity change of DMUs in multiple time periods by DEA, for the first time the Malmquist Index was introduced by Caves et al (1982) for measuring the Malmquist Index. Fare et. al (1992, 1994), they computed the Malmquist index in CRS and VRS of DEA models. Also Maria Portella and Thanassoulis, defined Meta Efficiency and based on Meta Malmquist Index, they computed Meta Malmquist Index in CRS and VRS models of DEA. Meta Malmquist computes change of Meta

Efficiency. The structure of the paper is as follows. In section 2 Trade Offs model of DEA is described. Section 3, we introduce Meta Malmquist Index in different models of DEA. In section 4, we explain advantage of Meta Malmquist Index and in the section 5 using the Meta frontier to compare productivities of DMUs. In section 6 we explained comparing two units at two different point in time To illustrate numerical example is brought in section 7. The last section summarizes and concludes.

2. Trade Offs in DEA models

Considering the observed output vector as Y_{j} $\in R^{s}$ and the input vector as $X_{j} \in R^{m}$, we assume that the inputs and outputs are nonnegative and $X_{j} \neq 0$, $\mathrm{Y}_{\mathrm{j}} \neq 0$ for $\mathrm{DMU}_{\mathrm{j}}, \mathrm{j}=1,2, \ldots, \mathrm{n}$.
A Trade Off is a judment of possible variation in some input and or output levels, with which DMU can work without changing the other inputs and or outputs. For example, in the case of two inputs and a single output, the trade-off $(\mathrm{P}, \mathrm{Q})=(2,-1,0)$ indicates that the DMU can work by increasing the first input by two and decreasing the second input one without changing its output (for more details, see Podinovski, 2004).

Now, suppose we have k Trade Offs. We shall represent the Trade Offs in the following form: $\left(P_{r}, Q_{r}\right)$, where $r=1,2, \ldots, k$. Also, the vector $P_{r} \in$ R^{m} and $Q_{r} \in R^{s}$ modify the inputs and outputs, respectively.For using Trade Offs in DEA models, Podinovski makes some assumptions and extends the axioms of PPS in the following manner:
Assumption:
1-All the DMUs should accept the Trade Offs.
2- Each Trade Off can be used repetitively by the DMUs.

Extended axioms:

1- (Nonempty). The observed $\left(X_{j}, Y_{j}\right) \in T ; j=1,2$, ..., n.
2- (Proportionality). If $(X, Y) \in T$, then $(\lambda X, \lambda Y) \in T$ for all $\lambda \geq 0$.
3- (Convexity). The set T is convex.
4- (Free disposability). If (X, Y) $\in T, \bar{X} \geq X, \bar{Y} \geq$ Y,then $(\bar{X}, \bar{Y}) \in T$.
5- (Feasibility of Trade Offs). Let $(X, Y) \in T$. Then for any Trade Off r in the form of $\left(P_{r}, Q_{r}\right) \in T$ and any $\pi_{\mathrm{r}} \geq 0$, the unit $\left(\mathrm{X}+\pi_{\mathrm{r}} \mathrm{P}_{\mathrm{r}}, \mathrm{Y}+\pi_{\mathrm{r}} \mathrm{Q}_{\mathrm{r}}\right) \in \mathrm{T}$, provided that $\mathrm{X}+\pi_{\mathrm{r}} \mathrm{P}_{\mathrm{r}} \geq 0$ and $\mathrm{Y}+\pi_{\mathrm{r}} \mathrm{Q}_{\mathrm{r}} \geq 0$.
6- (Closeness). The set T is closed.
7- (Minimum extrapolation). T is the smallest set that satisfies axiom 1-6. (Where T is, $\mathrm{T}=\{(\mathrm{X}, \mathrm{Y}) \mid$ output vector $\mathrm{Y} \geq 0$ can produced from input vector $\mathrm{X} \geq 0\}$). Now, the PPS can be defined on the basis of the following.
The minimal PPS $\left(\mathrm{PPS}_{\mathrm{TO}}\right)$ that satisfies axioms (1) (7) is:
$\operatorname{PPS}_{\text {TO }}=\left\{(\mathrm{X}, \mathrm{Y}) \mid \mathrm{Y}=\overline{\mathrm{Y}} \lambda+\sum_{\mathrm{t}=1}^{\mathrm{k}} \pi_{\mathrm{t}} \mathrm{Q}_{\mathrm{t}}-\mathrm{e}, \mathrm{X}=\overline{\mathrm{X}} \lambda+\right.$ $\sum_{\mathrm{t}=1}^{\mathrm{k}} \pi_{\mathrm{t}} \mathrm{P}_{\mathrm{t}}+\mathrm{d}, \lambda \in \mathrm{R}_{+}^{\mathrm{n}}, \pi \in \mathrm{R}_{+}^{\mathrm{k}}, \mathrm{d} \in \mathrm{R}_{+}^{\mathrm{m}}$ and $\left.\mathrm{e} \in \mathrm{R}_{+}^{\mathrm{s}}\right\}$, (see Podinovski (2004)).
Based on PPSTO, for assessing the relative efficiency of DMUP ($\mathrm{p}=1,2, \ldots, \mathrm{n}$) that is defined from this PPS, we have the following model:
DEA model with trade-offs technology and input orientation

$$
\begin{array}{ll}
\text { Min } \theta_{\mathrm{p}} \\
\text { S.t } & \overline{\mathrm{X}} \lambda+\sum_{\mathrm{t}=1}^{\mathrm{k}} \pi_{\mathrm{t}} \mathrm{P}_{\mathrm{t}} \leq \theta_{\mathrm{p}} \mathrm{X}_{\mathrm{p}} \\
& \overline{\mathrm{Y}} \lambda+\sum_{\mathrm{t}=1}^{\mathrm{k}} \pi_{\mathrm{t}} \mathrm{Q}_{\mathrm{t}} \geq \mathrm{Y}_{\mathrm{p}} \tag{1}\\
& \lambda, \pi \geq 0, \theta_{\mathrm{p}} \text { sign free }
\end{array}
$$

DEA model with trade-offs technology and output orientation

Max θ_{p}
S.t $\quad \overline{\mathrm{X}} \lambda+\sum_{\mathrm{t}=1}^{\mathrm{k}} \pi_{\mathrm{t}} \mathrm{P}_{\mathrm{t}} \leq \mathrm{X}_{\mathrm{p}}$

$$
\begin{equation*}
\overline{\mathrm{Y}} \lambda+\sum_{\mathrm{t}=1}^{\mathrm{k}} \pi_{\mathrm{t}} \mathrm{Q}_{\mathrm{t}} \geq \theta_{\mathrm{p}} \mathrm{Y}_{\mathrm{p}} \tag{2}
\end{equation*}
$$

$\lambda, \pi \geq 0, \theta_{\mathrm{p}}$ sign free
Now, by considering the definition of $\mathrm{PPS}_{\mathrm{TO}}^{\mathrm{t}}$, we have the following problem with different frontiers (t $=1,2$):
DEA model with Trade Offs technology and input orientation
Frontier-period=t, DMUp-period=t
$\operatorname{Min} \theta_{\mathrm{p}}^{\mathrm{t}}$
S.t $\quad \bar{X}^{t} \lambda^{t}+\sum_{t=1}^{k} \pi_{r} P_{r}^{t} \leq \theta_{p}^{t} X_{p}^{t}$

$$
\begin{align*}
& \bar{Y}^{\mathrm{t}} \lambda^{\mathrm{t}}+\sum_{\mathrm{t}=1}^{\mathrm{k}} \pi_{\mathrm{r}} \mathrm{Q}_{\mathrm{r}}^{\mathrm{t}} \geq \mathrm{Y}_{\mathrm{p}}^{\mathrm{t}+1} \tag{3}\\
& \lambda^{\mathrm{t}}, \pi \geq 0, \theta_{\mathrm{p}}^{\mathrm{t}} \text { sign free }
\end{align*}
$$

DEA model with Trade Offs technology and input orientation
Frontier-period=t +1 DMUp-period=t +1

$$
\begin{array}{ll}
\text { Min } \theta_{\mathrm{p}}^{\mathrm{t}+1} \\
\text { S.t } & \bar{X}^{\mathrm{t}+1} \lambda^{\mathrm{t}+1}+\sum_{\mathrm{t}=1}^{\mathrm{k}} \pi_{\mathrm{r}} \mathrm{P}_{\mathrm{r}}^{\mathrm{t}+1} \leq \theta_{\mathrm{p}}^{\mathrm{t}+1} \mathrm{X}_{\mathrm{p}}^{\mathrm{t}+1} \\
& \overline{\mathrm{Y}}^{\mathrm{t}+1} \lambda^{\mathrm{t}+1}+\sum_{\mathrm{t}=1}^{\mathrm{k}} \pi_{\mathrm{r}} \mathrm{Q}_{\mathrm{r}}^{\mathrm{t}+1} \\
& \lambda^{\mathrm{t}}, \pi \geq 0, \theta_{\mathrm{p}}^{\mathrm{t}+1} \text { sign free } \tag{4}
\end{array}
$$

DEA model with Trade Offs technology and input orientation
Frontier-period=t DMUp-period=t +1
$\operatorname{Min} \theta_{\mathrm{p}}^{\mathrm{t}}$
S.t $\quad \bar{X}^{\mathrm{t}} \lambda^{\mathrm{t}}+\sum_{\mathrm{t}=1}^{\mathrm{k}} \pi_{\mathrm{r}} \mathrm{P}_{\mathrm{r}}^{\mathrm{t}} \leq \theta_{\mathrm{p}}^{\mathrm{t}} X_{\mathrm{p}}^{\mathrm{t}+1}$
$\bar{Y}^{\mathrm{t}} \lambda^{\mathrm{t}}+\sum_{\mathrm{t}=1}^{\mathrm{k}} \pi_{\mathrm{r}} \mathrm{Q}_{\mathrm{r}}^{\mathrm{t}} \geq \mathrm{Y}_{\mathrm{p}}^{\mathrm{t}+1}$

$$
\begin{equation*}
\lambda^{\mathrm{t}}, \pi \geq 0, \theta_{\mathrm{p}}^{\mathrm{t}} \text { sign free } \tag{5}
\end{equation*}
$$

DEA model with Trade Offs technology and input orientation
Frontier-period=t + 1 DMUp-period=t

$$
\begin{align*}
& \text { Min } \theta_{\mathrm{p}}^{\mathrm{t}+1} \\
& \text { S.t } \overline{\mathrm{X}}^{\mathrm{t}+1} \lambda^{\mathrm{t}+1}+\sum_{\mathrm{t}=1}^{\mathrm{k}} \pi_{\mathrm{r}} \mathrm{P}_{\mathrm{r}}^{\mathrm{t}+1} \leq \theta_{\mathrm{p}}^{\mathrm{t}+1} \mathrm{X}_{\mathrm{p}}^{\mathrm{t}} \\
& \\
& \quad \overline{\mathrm{Y}}^{\mathrm{t}+1} \lambda^{\mathrm{t}+1}+\sum_{\mathrm{t}=1}^{\mathrm{k}} \pi_{\mathrm{r}} \mathrm{Q}_{\mathrm{r}}^{\mathrm{t}+1} \tag{6}\\
& \quad \lambda^{\geq}, \pi \geq 0, \theta_{\mathrm{p}}^{\mathrm{t}+1} \text { sign free }
\end{align*}
$$

Where X_{p}^{t} is the input vector and Y_{p}^{t} is the output vector for DMUp ($p=1,2, \ldots, n$) in period t.
First, we define EEC and ETC, consider the following equations:

$$
\begin{align*}
\mathrm{EEC} & =\frac{\theta_{(\mathrm{t}+1)}^{\mathrm{t}+1(\mathrm{TO})}}{\theta_{(\mathrm{t})}^{\mathrm{t}(\mathrm{t})}} \\
\mathrm{ETC} & =\left[\frac{\theta_{(\mathrm{t})}^{\mathrm{t}(\mathrm{TO})}}{\theta_{(\mathrm{t})}^{\mathrm{t}+1(\mathrm{TO})}} \times \frac{\theta_{(\mathrm{t}+1)}^{\mathrm{t}(\mathrm{TO})}}{\theta_{(\mathrm{t}+1)}^{\mathrm{t}+1(\mathrm{TO})}}\right]^{\frac{1}{2}} \tag{8}
\end{align*}
$$

EEC define the changes of efficiencies for DMUp between two periods based on Trade Off
technology. ETC define the change of Trade Off frontiers for DMUp between two periods.

These two definitions can present a decomposition of the EMI (Expanded Malmquist Index) as follows:

$$
\mathrm{EMI}=\mathrm{EEC} \times \mathrm{ETC}(9)
$$

Consider another equation:
REC define the changes of efficiencies for DMUp between two periods, which includes any change that come from rules and regulations based trade offs. Then,
$\mathrm{EMI}=\mathrm{EC} \times \mathrm{REC} \times \mathrm{ETC}$
or $\quad \mathrm{EMI}=\mathrm{PEC} \times \mathrm{SEC} \times$ REC $\times \mathrm{ETC}$
Where
$E C=\frac{\theta_{(t+1)}^{t+1(\mathrm{CRS})}}{\theta_{(\mathrm{t})}^{\mathrm{t}(\mathrm{CRS})}}$
(12) and
$\mathrm{TC}=\left[\frac{\theta_{(\mathrm{t})}^{\mathrm{t}(\mathrm{CRS})}}{\theta_{(\mathrm{t})}^{\mathrm{t}+1(\mathrm{CRS})}} \times \frac{\theta_{(\mathrm{t}+1)}^{\mathrm{t}(\mathrm{CRS})}}{\theta_{(\mathrm{t}+1)}^{\mathrm{t}+(\mathrm{CRS})}}\right]^{\frac{1}{2}}$
PEC $=\frac{\theta_{(\mathrm{t}+1)}^{\mathrm{t}+1(\mathrm{VRS})}}{\theta_{(\mathrm{t})}^{\mathrm{t}(\mathrm{VRS})}}$
$\operatorname{SEC}=\left[\frac{\theta_{(\mathrm{t})}^{\mathrm{t}(\mathrm{VRS})}}{\theta_{(\mathrm{t})}^{\mathrm{t} 1(\mathrm{CRS})}} \times \frac{\theta_{(\mathrm{t}+1)}^{\mathrm{t}(\mathrm{CRS})}}{\theta_{(\mathrm{t}+1)}^{\mathrm{t} 1(\mathrm{VRS})}}\right]^{\frac{1}{2}}$
So we have
Malmquist Index $=\mathrm{EC} \times \mathrm{TC}$
(16)
or Malmquist Index $=\mathrm{PEC} \times \mathrm{SEC} \times \mathrm{TC}$
We now, DEA models for measuring efficiency of $\operatorname{DMUp}(\mathrm{p}=1,2, \ldots, \mathrm{n})$ with problems below:

DEA model with CRS technology and input orientation

$$
\begin{array}{ll}
\operatorname{Min} \theta_{\mathrm{p}} \\
\text { S.t } & \overline{\mathrm{X}} \lambda \leq \theta_{\mathrm{p}} X_{\mathrm{p}} \\
& \overline{\mathrm{Y}} \lambda \geq \mathrm{Y}_{\mathrm{p}} \tag{18}\\
& \lambda \geq 0, \theta_{\mathrm{p}} \text { sign free }
\end{array}
$$

DEA model with VRS technology and input orientation

$\operatorname{Min} \theta_{\mathrm{p}}$

S.t $\quad \overline{\mathrm{X}} \lambda \leq \theta_{\mathrm{p}} \mathrm{X}_{\mathrm{p}}$
$\overline{\mathrm{Y}} \lambda \geq \mathrm{Y}_{\mathrm{p}}$
$1 \cdot \lambda=1$
$\lambda \geq 0, \theta_{\mathrm{p}}$ sign free

Thus, if $\theta_{\mathrm{j}(\mathrm{t})}^{\mathrm{T}}$ is the efficiency measure of unit j observed at time t relative to the technology boundary of time period T, then a Malmquist Index of the change of its productivity between period t and $t+1$ is given by Malmquist productivity change index j equivalent $\frac{\theta_{\mathrm{j}}^{\mathrm{T}}(\mathrm{t}+1)}{\left.\theta_{\mathrm{j}}^{\mathrm{T}} \mathrm{t}\right)}$ (20) and the traditional Malmquist index is computed by $\mathrm{MI}=\frac{\theta_{\mathrm{j}(t+1)}^{\mathrm{T}+1}}{\theta_{\mathrm{j}(\mathrm{t})}^{\mathrm{T}}} \times$
$\left[\frac{\theta_{j(t+1)}^{\mathrm{T}}}{\theta_{j(t+1)}^{\mathrm{T}}} \times \frac{\theta_{\mathrm{j}}^{\mathrm{T}}(t)}{\left.\theta_{\mathrm{j}(\mathrm{t})}^{\mathrm{T}}\right)^{\frac{1}{2}}}\right]^{\frac{1}{2}}$
(21) where $\frac{\theta_{(\mathrm{t}+1)}^{\mathrm{T}+1}}{\theta_{\mathrm{j}(\mathrm{t})}^{\mathrm{T}}}$
(22) is an
efficiency change and $\left[\frac{\theta_{j(t+1)}^{\mathrm{T}}}{\theta_{\mathrm{j}(t+1)}^{\mathrm{T}+1}} \times \frac{\theta_{\mathrm{j}}^{\mathrm{T}}(\mathrm{t})}{\theta_{\mathrm{j}(\mathrm{t})}^{\mathrm{T} t+1}}\right]^{\frac{1}{2}} \quad$ (23) is a technological change or boundary shift.

$$
\begin{gather*}
\mathrm{EC}=\frac{\theta_{\mathrm{j}(\mathrm{t}+1)}^{\mathrm{T}+1(\mathrm{CRS})}}{\theta_{\mathrm{j}(\mathrm{t})}^{\mathrm{T}(\mathrm{tRS})}} \tag{24}\\
\mathrm{PEC}=\frac{\theta_{\mathrm{j}(\mathrm{t}+1)}^{\mathrm{T}+1(\mathrm{VRS})}}{\theta_{\mathrm{j}(\mathrm{t})}^{\mathrm{T}(\mathrm{VRS})}} \tag{25}\\
\mathrm{TC}=\left[\frac{\theta_{\mathrm{j}(\mathrm{t})}^{\mathrm{T}(\mathrm{CRS})}}{\theta_{\mathrm{j}(\mathrm{t})}^{\mathrm{T}+1(\mathrm{CRS})}} \times \frac{\theta_{\mathrm{j}(\mathrm{t}+1)}^{\mathrm{T}(\mathrm{CRS})}}{\theta_{\mathrm{j}(\mathrm{t}+1)}^{\mathrm{T}+1(\mathrm{CRS})}}\right]^{\frac{1}{2}} \\
\mathrm{SEC}=\left[\frac{\theta_{\mathrm{j}(\mathrm{t})}^{\mathrm{T}(\mathrm{VRS})}}{\theta_{\mathrm{j}(\mathrm{t})}^{\mathrm{t}(\mathrm{CRS})}} \times \frac{\theta_{\mathrm{j}(\mathrm{t}+1)}^{\mathrm{T}+1(\mathrm{CRS})}}{\theta_{\mathrm{j}}^{\mathrm{T}(\mathrm{t}+1(\mathrm{VRS})}}\right]^{\frac{1}{2}} \\
\mathrm{EEC}=\frac{\theta_{\mathrm{j}(\mathrm{t}+1)}^{\mathrm{T}+1(\mathrm{TO})}}{\theta_{\mathrm{j}(\mathrm{t})}^{\mathrm{T}(\mathrm{TO})}} \tag{28}\\
\mathrm{ETC}=\left[\frac{\theta_{\mathrm{j}(\mathrm{t})}^{\mathrm{T}(\mathrm{TO})}}{\theta_{\mathrm{j}(\mathrm{t})}^{\mathrm{T}(\mathrm{TO})}} \times \frac{\theta_{\mathrm{j}(\mathrm{t}+1)}^{\mathrm{T}(\mathrm{TO})}}{\theta_{\mathrm{j}(\mathrm{t}+1)}^{\mathrm{T}+1(\mathrm{TO})}}\right]^{\frac{1}{2}} \tag{29}
\end{gather*}
$$

$\mathrm{MI}=\mathrm{EC} \times \mathrm{TC}$
$\mathrm{MI}=\mathrm{PEC} \times \mathrm{SEC} \times \mathrm{TC}$
$\mathrm{MI}=\mathrm{EEC} \times \mathrm{ETC}$
$\mathrm{EMI}=\mathrm{EC} \times$ REC $\times \mathrm{ETC}$
$\mathrm{EMI}=\mathrm{PEC} \times \mathrm{SEC} \times \mathrm{REC} \times \mathrm{ETC}$

3. Meta Malmquist Index

Consider DMUs (1, 2, ..., n) observed over time period $\mathrm{t}, \mathrm{t}=1,2, \ldots, \mathrm{~T}$ so that meta period covers T periods. Let $\left(\mathrm{X}_{\mathrm{ij}}^{\mathrm{t}}, \mathrm{Y}_{\mathrm{rj}}^{\mathrm{t}}\right)$ be respectively the ith input and rth output level of DMUj in period t within the meta period, The meta efficiency of DMUj 0 and j 0 $\in 2(1,2, \ldots, \mathrm{n})$ observed in some period $\tau \in$
$(1,2, \ldots, \mathrm{~T})$ is $\theta_{\mathrm{j} 0(\tau)}^{\mathrm{m}}$, where $\theta_{\mathrm{j} 0(\tau)}^{\mathrm{m}}$, is the optimal value of $\mathrm{k}_{\mathrm{j} 0}$ in model (35) below:

$$
\begin{aligned}
& \theta_{\mathrm{j} 0(\tau)}^{\mathrm{m}}=\min _{\mathrm{k}}^{\mathrm{j} 0} \\
& \text { S.t } \quad \sum_{\mathrm{t}=1}^{\mathrm{T}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \lambda_{\mathrm{jt}} \mathrm{x}_{\mathrm{ij}}^{\mathrm{t}} \leq \mathrm{k}_{\mathrm{j} 0} \mathrm{x}_{\mathrm{ij} 0}^{\tau} \quad \mathrm{i}=1,2, \ldots, \mathrm{~m} \\
& \sum_{\mathrm{t}=1}^{\mathrm{T}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \lambda_{\mathrm{jt}} \mathrm{y}_{\mathrm{rj}}^{\mathrm{t}} \geq \mathrm{y}_{\mathrm{rj} 0}^{\tau} \quad \mathrm{r}= \\
& 1,2, \ldots, \mathrm{~s} \text { (35) } \\
& \lambda_{j t} \geq 0, j=1,2, . ., n \quad k_{j 0} \quad \text { free }
\end{aligned}
$$

Model (35) relates to constant return to scale technologies and has input orientation. Now let $\theta_{\mathrm{jt}}^{\mathrm{m}}$ be the Meta efficiency of unit j as observed in period t and computed using a model such as (35). Then we have:
Meta efficiency of unit j observed in period $t=$ within period t efficiency of unit $j \times$ technological gap between period t boundary and the Meta frontier.
Putting the foregoing decomposition in symbols we have $\theta_{\mathrm{jt}}^{\mathrm{m}}=\theta_{\mathrm{jt}}^{\mathrm{T}} \times \mathrm{TG}_{\mathrm{jt}}$ where $\theta_{\mathrm{jt}}^{\mathrm{T}} \mathrm{i}$ s obtained for each unit j 0 as the optimal value of $\mathrm{k}_{\mathrm{j} 0}$ in (35) after dropping all instances apart from those occurring in period t, and $T G_{j t}$ is retrieved residually as $T G_{j t}=$ $\frac{\theta_{\mathrm{jt}}^{\mathrm{m}(\mathrm{CRS})}}{\theta_{\mathrm{jt}}^{\mathrm{T}(\mathrm{CRS})}}$ thus $\theta_{\mathrm{jt}}^{\mathrm{m}(\text { CRS })}=\theta_{\mathrm{jt}}^{\mathrm{T}(\mathrm{CRS})} \times \mathrm{TG}_{\mathrm{jt}}^{\mathrm{CRS}}$
In this paper, we obtain $\theta_{\mathrm{jt}}^{\mathrm{m}}$ by solving Trade Offs
model. First, we introduce Meta Malmquist Index for DMUj between period t and $\mathrm{t}+1$.
Meta Malmquist Index=MI ${ }_{t, t+1}^{\mathrm{j}}=\frac{\theta_{\mathrm{j}}^{\mathrm{m}}(\mathrm{t}+1)}{\theta_{\mathrm{jt}}^{\mathrm{m}}} \quad($ Maria Portela and Thanassoulis(2008)). So
$\mathrm{MI}_{\mathrm{t}, \mathrm{t}+1}^{\mathrm{j}(\text { CRS })}$
$=$
$\frac{\theta_{j(t+1)}^{m}}{\theta_{j t}^{m}}=$
$\frac{\theta_{\mathrm{j}}^{\mathrm{T}+1(\mathrm{t}+\mathrm{CRS})}}{\theta_{\mathrm{j}(\mathrm{t})}^{\mathrm{T}(\mathrm{tRS})}} \times \frac{\mathrm{TG}_{\mathrm{j}}^{\mathrm{CRS}}}{\mathrm{TG}_{\mathrm{j}(\mathrm{t}+1)}^{\mathrm{CRS}}}$

The term $\frac{\theta_{\mathrm{j}(\mathrm{t}+1)}^{\mathrm{T}}}{\theta_{\mathrm{j}(\mathrm{t})}^{\mathrm{T}}}$ captures the efficiency change of unit j from year $t+1$ as in traditional Malmquist Index of productivity change.
The term $\frac{\mathrm{TG}_{\mathrm{j}(\mathrm{t}+1)}}{\mathrm{TG}_{\mathrm{j}(\mathrm{t})}}$ captures frontier shift between period t and $t+1, \frac{T G_{j(t+1)}}{T G_{j(t)}}=\frac{\theta_{j}^{m}}{\left.\theta_{j(t+1)}^{T+1}+1\right)} / \frac{\theta_{j(t)}^{m}}{\theta_{j(t)}^{T}}$.
For computing VRS efficiency scores all that is to add to DEA models (such as (35)) the convexity constraint imposing the sum of all lambdas to be 1 , $\sum_{\mathrm{t}=1}^{\mathrm{T}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \lambda_{\mathrm{jt}}=1$, which in the case of (35). Would yield the Meta efficiency VRS score of unit j0. Now, we write DEA model with Trade Offs technology and input orientation. Suppose we have k Trade Offs, and we show $\left(\mathrm{P}_{\mathrm{h}}, \mathrm{Q}_{\mathrm{h}}\right)$ where $\mathrm{h}=1,2, \ldots, \mathrm{k}$, then the meta efficiency of $\mathrm{DMU}_{\mathrm{j} 0}$ and $\mathrm{j} 0 \in(1,2, \ldots, \mathrm{n})$ observed in
some period $\tau, \tau \in(1,2, \ldots, T)$ is $\theta_{\mathrm{j} 0(\tau)}^{\mathrm{m}}$, where $\theta_{\mathrm{j} 0(\tau)}^{\mathrm{m}}$ is the optimal value of $\mathrm{k}_{\mathrm{j} 0}$ in model (38) below:

$$
\begin{align*}
& \theta_{\mathrm{j} 0(\tau)}^{\mathrm{m}}=\min \mathrm{k}_{\mathrm{j} 0} \\
& \mathrm{S.t} \quad \sum_{\mathrm{t}=1}^{\mathrm{T}}\left(\sum_{\mathrm{j}=1}^{\mathrm{n}} \lambda_{\mathrm{jt}} \mathrm{x}_{\mathrm{ij}}^{\mathrm{t}}+\sum_{\mathrm{h}=1}^{\mathrm{k}} \pi_{\mathrm{ht}} \mathrm{P}_{\mathrm{ih}}^{\mathrm{t}}\right) \leq \\
& \mathrm{k}_{\mathrm{j} 0} \mathrm{x}_{\mathrm{ij} 0}^{\tau} \quad \mathrm{i}=1,2, \ldots, \mathrm{~m} \\
& \quad \sum_{\mathrm{t}=1}^{\mathrm{T}}\left(\sum_{\mathrm{j}=1}^{\mathrm{n}} \lambda_{\mathrm{jt}} \mathrm{y}_{\mathrm{rj}}^{\mathrm{t}}+\sum_{\mathrm{h}=1}^{\mathrm{k}} \pi_{\mathrm{ht}} \mathrm{Q}_{\mathrm{rh}}^{\mathrm{t}} \geq\right. \\
& \mathrm{y}_{\mathrm{r} j 0}^{\tau} \quad \begin{array}{r}
\mathrm{r}=1,2, \ldots, \mathrm{~s} \\
\quad \lambda_{\mathrm{jt}} \geq 0 \quad, \mathrm{j}=1,2, \ldots, \mathrm{n} \quad(38) \\
\mathrm{k}_{\mathrm{j} 0} \quad \text { free } \pi_{\mathrm{ht}} \geq
\end{array} \tag{38}
\end{align*}
$$

$0 \mathrm{~h}=1,2, \ldots \mathrm{k}$
Model (38) relates to Trade Offs technologies and has an input orientation. Thus $\theta_{\mathrm{jt}}^{\mathrm{m}(\mathrm{TO})}$ is the Meta efficiency of unit j as observed in period t and computed using a model such as (38). $\theta_{\mathrm{jt}}^{\mathrm{m}(\mathrm{TO})}=\theta_{\mathrm{jt}}^{\mathrm{T}(\mathrm{TO})} \times \mathrm{TG}_{\mathrm{jt}}^{\mathrm{TO}}$ is obtained for each unit j 0 as the optimal value of $\mathrm{k}_{\mathrm{j} 0}$ in (38) after dropping all instances apart from those occurring in period t, then $\mathrm{TG}_{\mathrm{jt}}^{\mathrm{TO}}=\frac{\theta_{\mathrm{jt}}^{\mathrm{m}}}{\theta_{\mathrm{jt}}^{\mathrm{T}(\mathrm{TO})}}$ and we obtain $\theta_{\mathrm{j} 0 \tau}^{\mathrm{T}(\mathrm{TO})}$ from solving this program:

$\times \frac{\theta_{j(t)}^{T(T O)}}{\theta_{j(t+1)}^{T+1(T O)}}$
$M I_{t, t+1}^{j(T O)}=E E C \times \frac{T G_{j(t+1)}^{T O}}{T G_{j(t)}^{T O}}=E C \times R E C \times$
$\frac{T G_{j(t+1)}^{T O}}{T G_{j(t)}^{T O}}=P E C \times S E C \times R E C \times \frac{T G_{j(t+1)}^{T O}}{T G_{j(t)}^{T O}}$
Thus $\quad M I_{t, t+1}^{j(T O)}=\frac{E M I}{E T C} \times \frac{T G_{j(t+1)}^{T O}}{T G_{j(t)}^{T O}}$

4. Advantage of the Circular Meta Malmquist Index

To see that note that $\frac{\theta_{j(t+2)}^{m}}{\theta_{j t}^{m}}=\frac{\theta_{j(t+2)}^{m}}{\theta_{j(t+1)}^{m}} \times \frac{\theta_{j(t+1)}^{m}}{\theta_{j(t)}^{m}}$. That is the productivity change between period t and $t+2$ is the product of the successive productivity change from period t to $\mathrm{t}+1$ and from period $\mathrm{t}+1$ to $\mathrm{t}+2$.

$$
\begin{equation*}
\frac{\theta_{j(t+2)}^{m(T O)}}{\theta_{j t}^{m(T O)}}=\frac{\theta_{j(t+2)}^{m(T O)}}{\theta_{j(t+1)}^{m(T O)}} \times \frac{\theta_{j(t+1)}^{m(T O)}}{\theta_{j(t)}^{m(T O)}} \tag{44}
\end{equation*}
$$

Similarly, we will want $\quad \frac{\theta_{j(t+2)}^{T+2(T O)}}{\theta_{j t}^{T(T O)}}=\frac{\theta_{j(t+2)}^{T+2(T O)}}{\theta_{j(t+1)}^{T+1(T O)}} \times$ $\frac{\theta_{j(t+1)}^{T+1(T O)}}{\theta_{j(t)}^{T(T O)}}$
and $\frac{T G_{j(t+2)}^{T+2(T O)}}{T G_{j t}^{T(T O)}}=\frac{T G_{j(t+2)}^{T+2(T O)}}{T G_{j(t+1)}^{T+1(T O)}} \times \frac{T G_{j(t+1)}^{T+1(T O)}}{T G_{j(t)}^{T(T O)}}$ is a boundary shift from period t to $t+2$. And meta efficiency VRS score of unit j0 is $\theta_{j(t)}^{m(T O)}=\theta_{j(t)}^{T(V R S)} \times \frac{\theta_{j(t)}^{m(V R S)}}{\theta_{j t}^{T(V R S)}} \times$ $\frac{\theta_{j(t)}^{m(T O)}}{\theta_{j t}^{m(V R S)}}=\theta_{j(t)}^{T(V R S)} \times T G V_{j t} \times M S E T_{j t}$ that is meta efficiency decomposes in to within period efficiency in relation to a VRS frontier $\theta_{j(t)}^{T(V R S)}$, technological gap between the VRS frontier in t and the VRS meta frontier $\frac{\theta_{j(t)}^{m(V R S)}}{\theta_{j t}^{T(V R S)}}$, labeled TGV and meta scale efficiency $\frac{\theta_{j(t)}^{m(T O)}}{\theta_{j t}^{m(V R S)}}$ labeled MSET. Note that MSET capture the distance between the TO and V RS meta frontiers, at the input output mix of unit j as observed in period t , thus the circular Meta Malmquist Index, defined asn $M I_{t, t+1}^{j(T O)}=\frac{\theta_{j(t+1)}^{m(T O)}}{\theta_{j t}^{m(T O)}}$ can be decomposed as shown:

$$
\begin{equation*}
M I_{t, t+1}^{j(T O)}=\frac{\theta_{j(t+1)}^{T+1(V R S)}}{\theta_{j t}^{\mathrm{T}(V R S)}} \times \frac{T G V_{j(t+1)}}{T G V_{j(t)}} \tag{45}
\end{equation*}
$$

$\times \frac{\operatorname{MSET}_{j(t+1)}}{\operatorname{MSET}_{j(t)}}$

$$
\begin{equation*}
M I_{t, t+1}^{j(T o)}=P E C \times \frac{T G V_{j(t+1)}}{T G V_{j(t)}} \tag{46}
\end{equation*}
$$

$\times \frac{\operatorname{MSET}_{j(t+1)}}{M S E T_{j(t)}}$
Pure technical efficiency change $\frac{\theta_{j(t+1)}^{T+1(V R S)}}{\theta_{j t}^{T(V R S)}}$, frontier shift between VRS frontiers $\frac{T G V_{j(t+1)}}{T G V_{j(t)}}$ and Meta scale efficiency change $\frac{M S E T_{j(t+1)}}{M S E T_{j(t)}}$.

5. Using the meta frontier to compare productivities of units

Using now the unit specific boundaries we can compute two efficiency scores for each unit instance $j t$ (i.e unit j observed in year t). One efficiency will be relative to the meta frontier as before and denoted $\theta_{j t}^{m}$, while the second will be relative to the unit specific boundary as defined above and it is denoted $\theta_{j t}^{U_{j}}$, where the index U_{j} relates to the unit specific boundary of unit j , and $\theta_{j t}^{U_{j}}$ in relation to unit $\mathrm{j} 0 \in$ $(1,2, \ldots, \mathrm{n})$ observed in period $\tau \in(1,2, \ldots, \mathrm{~T})$ is obtained buy solving model (49) (M. Portela and et.al (2008)).

$$
\theta_{j 0(\tau)}^{U_{j}}=\min k_{j 0}
$$

$$
\begin{array}{ccl}
\text { S.t } & \sum_{t=1}^{T} \lambda_{j 0 t} x_{i j 0}^{t} \leq k_{j 0} x_{i j 0}^{\tau} & i=1,2, \ldots, m \\
\sum_{t=1}^{T} \lambda_{j 0 t} y_{r j 0}^{t} \geq y_{r j 0}^{\tau} & r= \\
1,2, \ldots, s \quad(49) & \\
& \lambda_{j t} \geq 0, j=1,2, . . n & k_{j 0} \quad \text { free }
\end{array}
$$

Notation in (49) is as in (35). Note now that we have $\theta_{j t}^{m}=\theta_{j t}^{U_{j}} \times U G_{j t}$ where is retrieved residually and it measure the distance from the unit specific frontier to the Meta frontier, we shall refer to $U G_{j t}$ as the unit frontier gap for unit j , measured at the units inputoutput mix in time period t .
Now we will obtain $\theta_{j t}^{U_{j}}$ in Trade Offs model in DEA, therefore we will have $\theta_{j t}^{U_{j}}$ by solving model (50). Suppose we have k Trade Offs, and we show $\left(P_{h}, Q_{h}\right)$ where $\mathrm{h}=1,2, \ldots, \mathrm{k}$, then $D M U_{j 0}$ and $\mathrm{j} 0 \in$ $(1,2, \ldots, \mathrm{n})$ observed in some period $\tau, \tau \in$ $(1,2, \ldots, T)$ is $\theta_{j 0(\tau)}^{m}$ where $\theta_{j 0(\tau)}^{m}$ is the optimal value of $k_{j 0}$ in model (50) below:
$\theta_{j 0(\tau)}^{U_{j}}=\min k_{j 0}$

$$
\begin{aligned}
& \text { S.t } \quad \sum_{t=1}^{T}\left(\lambda_{j 0 t} x_{i j 0}^{t}+\sum_{h=1}^{k} \pi_{h t} P_{i h}^{T}\right) \leq \\
& k_{j 0} x_{i j 0}^{\tau} \quad i=1,2, \ldots, m \\
& \sum_{t=1}^{T}\left(\lambda_{j 0 t} t+\sum_{h=1}^{k} \pi_{h t} Q_{r h}^{T}\right) \quad \geq \\
& y_{r j 0}^{\tau} \quad r=1,2, \ldots, s \\
& \lambda_{j 0 t} \geq 0, j=1,2, . ., n \quad k_{j 0} \text { free } \pi_{h t} \geq \\
& 0 h=1,2, \ldots k
\end{aligned}
$$

The $\theta_{j t}^{m}=\theta_{j t}^{U_{j}(T O)} \times U G_{j t}^{T O}$ where $U G_{j t}^{T O}$ is retrieved residually and it measures the distance from unit specific frontier to the Meta frontier. We shall refer to $U G_{j t}$ as the unit frontier gap for unit j , measured at the units input-output mix in time period t . We can
now the Meta efficiency of two units at the same period in time to compare their productivities. Let us consider unit j and k and let us take their instances in period t . A measure of their relative productivity is given by the ratio of their Meta efficiencies, $M I_{k j}^{t}=\frac{\theta_{j t}^{m}}{\theta_{k t}^{m}}$. When $M I_{k j}^{t}$ is greater than 1 it means that productivity at unit j is higher than that of unit k in period t . Values lower than 1 mean the converse.
By Using this definition which decomposes Meta efficiency in to within unit and unit frontier gap we can decompose the index of comparative unit productivity $M I_{k j}^{t}$ of unit j and k as observed in period t as follows (Maria Portela and Thanassoulis (2008)):

$$
\begin{equation*}
M I_{k j}^{t}=\frac{\theta_{j t}^{m}}{\theta_{k t}^{m}}=\frac{\theta_{j t}^{U_{j}}}{\theta_{k t}^{U_{k}}} \times \frac{U G_{j t}}{U G_{k t}} \tag{52}
\end{equation*}
$$

The term $\frac{\theta_{j t a}^{U_{j}}}{\theta_{k t}^{U_{k}}}$ captures the component of the relative productivity of units j and k accounted for by the distance of unit j in period t from its unit specific boundary U_{j} compared to the corresponding distance of unit k in period t from its own unit specific boundary U_{k}. This term will be referred to the general as within unit efficiency difference between j and k at time t . The term $\frac{U G_{j t}}{U G_{k t}}$ captures the component of the relative productivity of units j and k at time t accounted for by the distance of the unit specific boundary of unit j from the meta frontier, taken at the input-output mix of unit j at time t, compared to the corresponding distance of unit specific boundary of unit k taken at its input-output mix in period t. Given that the Meta frontier is stationary the ratio in question reflects the distance between the unit specific boundaries taken at their respective input-output mixes in period t. Thus the term $\frac{U G_{j t}}{U G_{k t}}$ is analogous to the Frontier Shift component in the Meta Malmquist Index of productivity change over time as defined in
$M I_{t, t+1}^{j}=\frac{\theta_{j(t+1)}^{m}}{\theta_{j t}^{m}}=\frac{\theta_{j(t+1)}^{T+1}}{\theta_{j t}^{T}} \times \frac{T G_{j(t+1)}}{T G_{j(t)}}$
But here the frontier shift is not over time but rather between production units. So we shall refer to the term $\frac{U G_{j t}}{U G_{k t}}$ as unit frontier shift between k and j at time t. Similarly, suppose we have k Trade Offs then we will observe:

$$
\begin{array}{r}
M I_{k j}^{t(T O)}=\frac{\theta_{j t}^{m(T O)}}{\theta_{k t}^{m(T O)}}= \\
\frac{\theta_{j t}^{U_{j}(T O)}}{\theta_{k t}^{U_{k}(T O)}} \times \frac{U G_{\mathrm{j} t}^{(T O)}}{U G_{k t}^{(T O)}} \tag{54}
\end{array}
$$

6. Comparing two units at two different point in time

We know generalize the above concepts to compare and decompose the productivities of two units at two different points in time. Let us consider units j and k and let us take their instance in period s and t respectively. A measure of the relative productivity is given by the ratio of their meta efficiencies, $M I_{k j}^{t s}=\frac{\theta_{j s}^{m}}{\theta_{k t}^{m}}$ and we will have (for more details seeMaria Portela and Thanassoulis (2008)):
$M I_{k j}^{t s}=\frac{\theta_{j s}^{m}}{\theta_{k t}^{m}}=\frac{\theta_{j s}^{m}}{\theta_{j t}^{m}} \times \frac{\theta_{j t}^{m}}{\theta_{k t}^{m}}$
That is $M I_{k j}^{t s}$ decomposes in two indices, The first index is $\frac{\theta_{j s}^{m}}{\theta_{j t}^{m}}$, This will be referred to as productivity change over time. Here it captures the change in the productivity of unit j between period t and s. The second index is $\frac{\theta_{j t}^{m}}{\theta_{k t}^{m}}$ this will be referred to as productivity difference between contemporaneous units. Here it captures the difference in the productivity of units j and k in period t Note that a similar decomposition to that in $M I_{k j}^{t s}$, but using unit k rather than j as a reference is also possible. That is we could have:
$M I_{k j}^{t s}=\frac{\theta_{j s}^{m}}{\theta_{k t}^{m}}=\frac{\theta_{k s}^{m}}{\theta_{k t}^{m}} \times \frac{\theta_{j s}^{m}}{\theta_{k s}^{m}}$
By using all of formulation in this paper we will have:

$$
\begin{equation*}
M I_{k j}^{t s}=\frac{\theta_{j s}^{S}}{\theta_{k t}^{T}} \times \frac{T G_{j s}}{T G_{j t}} \times \frac{\theta_{j t}^{U_{j}}}{\theta_{k t}^{U_{k}}} \times \frac{U G_{j t}}{U G_{k t}} \tag{57}
\end{equation*}
$$

That is the difference in productivity between units k and j observed in period t and s decomposes in to efficiency change $\frac{\theta_{j s}^{S}}{\theta_{k t}^{T}}$ for unit j between periods t and s , period frontier shift $\frac{T G_{j s}}{T G_{j t}}$ between s and t , at the input-output mix of unit j , within unit efficiency difference $\frac{\theta_{j t}^{U_{j}}}{\theta_{k t}^{U_{k}}}$ between j and k at time t and unit frontier shift $\frac{U G_{j t}}{U G_{k t}}$ between units j and k at their inputoutput mix in period t . Similarly, with having k Trade Offs we will have:
$M I_{k j}^{t s(T O)}=\frac{\theta_{j s}^{m(T O)}}{\theta_{k t}^{m(T O)}}=\frac{\theta_{k s}^{m(T O)}}{\theta_{k t}^{m(T O)}} \times \frac{\theta_{j s}^{m(T O)}}{\theta_{k s}^{m(T O)}}$
$M I_{k j}^{t s}=\frac{\theta_{j s}^{S(T O)}}{\theta_{k t}^{T(T O)}} \times \frac{T G_{j s}{ }^{T O}}{T G_{j t}{ }^{T O}} \times \frac{\theta_{j t}^{U_{j}(T O)}}{\theta_{k t}^{U_{k}(T O)}} \times \frac{U G_{j t}{ }^{T O}}{U G_{k t}{ }^{T O}}$ (59)

7. Example

Example 1: Consider Table (1)... (6) in this Tables, we have ten DMUs with three inputs and five outputs at three periods. Data have been taken from a commercial Bank in IRAN for seven branches. Assume that all DMUs agree as being true for the following judgments at two periods (we have three Trade Offs in each period).

1. $\left(P_{1}^{t}, Q_{1}^{t}\right)=\left(P_{1}^{t+1}, Q_{1}^{t+1}\right)=\left(P_{1}^{t+2}, Q_{1}^{t+2}\right)=\left(p_{11}^{t}, p_{12}^{t}, p_{13}^{t}, q_{11}^{t}, q_{12}^{t}, q_{13}^{t}, q_{14}^{t}, q_{15}^{t}\right)=$
($-10,10000000,1000000000,100000000,10000000000,1000000000,1100000000,10000000000$)
$2 .\left(P_{2}^{t}, Q_{2}^{t}\right)=\left(P_{2}^{t+1}, Q_{2}^{t+1}\right)=\left(P_{2}^{t+2}, Q_{2}^{t+2}\right)=\left(p_{21}^{t}, p_{22}^{t}, p_{23}^{t}, q_{21}^{t}, q_{22}^{t}, q_{23}^{t}, q_{24}^{t}, q_{25}^{t}\right)=$
$(-14,20000000,2000000000,11100000000,10000000000,100000000000,9000000000,900000000000)$
2. $\left(P_{3}^{t}, Q_{3}^{t}\right)=\left(P_{3}^{t+1}, Q_{3}^{t+1}\right)=\left(P_{3}^{t+2}, Q_{3}^{t+2}\right)=\left(p_{31}^{t}, p_{32}^{t}, p_{33}^{t}, q_{31}^{t}, q_{32}^{t}, q_{33}^{t}, q_{34}^{t}, q_{35}^{t}\right)=(0,0,0,0,0,0,0,0)$
$(-10,10000000,2000000000,100000000000,120000000000,100000000000,80000000000,-30000000)$
Table (1), Inputs in period t

Unit	x_{1}	x_{2}	x_{3}
$D M U_{1}$	24.6	1163006699	21214797126
$D M U_{2}$	26.51	433148930	586933516
$D M U_{3}$	14.69	2338234805	2423898801
$D M U_{4}$	20.15	1344914230	4260524118
$D M U_{5}$	19.74	488806775	3658263944
$D M U_{6}$	16.32	1506571113	1700726564
$D M U_{7}$	16.3	575541160	4931297789
$D M U_{8}$	38.64	687401632	9892984883
$D M U_{9}$	30.54	1052621363	10850597644
$D M U_{10}$	20.04	620789783	4005818426

Table (2), Inputs in period $t+1$

Unit	x_{1}	x_{2}	x_{3}
$D M U_{1}$	24.6	2195224416	20705682078
$D M U_{2}$	26.51	859703238	573439627
$D M U_{3}$	14.69	4686245937	2419191001
$D M U_{4}$	20.15	2716258762	5708905141
$D M U_{5}$	19.74	965343887	3510322663
$D M U_{6}$	16.32	2957622923	1767161564
$D M U_{7}$	16.3	1169632952	5089852841
$D M U_{8}$	38.64	1380459532	9688488055
$D M U_{9}$	30.54	2156060329	11187719906
$D M U_{10}$	20.04	1257857335	4003741426

Table (3), Inputs in period $t+2$

Unit	x_{1}	x_{2}	x_{3}
$D M U_{1}$	24.6	3161147138	17899623576
$D M U_{2}$	26.51	1268741030	1310517912
$D M U_{3}$	14.69	7030453173	2270066109
$D M U_{4}$	20.15	4110060766	5708955141
$D M U_{5}$	19.74	1437235127	3509804663
$D M U_{6}$	16.32	4396171175	1823653154
$D M U_{7}$	16.3	1794807344	5284876078
$D M U_{8}$	38.64	2076989680	10217822041
$D M U_{9}$	30.54	3307801816	11216072885
$D M U_{10}$	20.04	1892438197	2509333739

Table (4), Outputs in period t.

Unit	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
$D M U_{1}$	242241992696	149927581688	739255995	137914144	428667943
$D M U_{2}$	107238188475	86355903094	9516959	230075940	80728098
$D M U_{3}$	277898251065	219123202540	270049146	19573201	532701000
$D M U_{4}$	88180358515	173092885271	74637180	625952459	5860810117
$D M U_{5}$	128834133115	88264150018	235995190	906927396	7805587173
$D M U_{6}$	298359497990	184328871243	1712460544	1213573293	11308531095
$D M U_{7}$	85714984119	125413342055	54632177	385747036	5669053062
$D M U_{8}$	135956919734	119648993075	29280821	102535073	5155800956
$D M U_{9}$	333510866500	137294730996	79558096	112179147	666055008
$D M U_{10}$	234535258794	116487806490	85936562	152512990	453380535

Table (5), Outputs in period $t+1$.

Unit	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
$D M U_{1}$	249623342159	117399292537	1540543984	178683273	428667943
$D M U_{2}$	112562861469	86202028391	25345126	345083696	84628098
$D M U_{3}$	276955477174	195761787737	466977957	48703328	537701000
$D M U_{4}$	89769875594	175034650015	85423893	711106298	6140099086
$D M U_{5}$	126452729455	81056170548	1021865861	1097224634	7975379183
$D M U_{6}$	313515525726	180595350698	4678292867	1420994153	12549446009
$D M U_{7}$	88201054771	115220570013	59465117	737973247	5788081726
$D M U_{8}$	146533627624	113094425933	396985110	168979756	5150091667
$D M U_{9}$	328457006339	153646949485	160072278	180257561	656055008
$D M U_{10}$	239480060054	119637603603	153267220	232276956	468380535

Table (6), Outputs in period $t+2$.

Unit	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
$D M U_{1}$	293867028198	140441085515	1761926627	219200982	417867943
$D M U_{2}$	115139451138	87285197519	24844888	435539236	165778098
$D M U_{3}$	278333223405	206467052805	791923009	64527873	537701000
$D M U_{4}$	93698153403	174197607935	320187997	767855712	5878898037
$D M U_{5}$	141765332119	91751175208	1144343535	1405955598	8089357778
$D M U_{6}$	318100978977	188236536110	6433265613	1601266241	12025630507
$D M U_{7}$	90693221404	131524255400	141621574	906022389	6897553226
$D M U_{8}$	145024864957	117506091612	636944528	234797904	5138375112
$D M U_{9}$	347376530595	156528383470	167954127	203958539	661772204
$D M U_{10}$	242826874768	114773321947	208500176	268924230	368380535

Table (7), Meta Efficiency and Meta Malmquist Index for DMUs in CRS models of DEA.

Unit	$\theta_{j t}^{m(C R S)}$	$\theta_{j t+1}^{m(C R S)}$	$\theta_{j t+2}^{m(\mathrm{CRS})}$	$\mathrm{MI}_{\mathrm{t}, \mathrm{t}+1}^{\mathrm{j}(\text { CRS }}$	$\mathrm{MI}_{\mathrm{t}+1, \mathrm{t}+2}^{\mathrm{j}(\text { CRS }}$	$\mathrm{MI}_{\mathrm{t}, \mathrm{t}+2}^{\mathrm{j} \text { (CRS) }}$
DMU_{1}	0.8494	0.5976	0.6402	0.7036	1.0712	0.7537
DMU_{2}	1.0000	1.0000	0.5536	1.0000	0.5536	0.5536
DMU_{3}	1.0000	0.9844	0.9946	0.9844	1.0103	0.9946
DMU_{4}	0.8875	0.6896	0.6726	0.7771	0.9753	0.7579
DMU_{5}	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
DMU_{6}	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
DMU_{7}	1.0000	0.7384	0.7228	0.7384	0.9788	0.7228
DMU_{8}	0.8586	0.4812	0.3739	0.5604	0.7771	0.4355
DMU_{9}	0.9042	0.6742	0.6165	0.7456	0.9145	0.6819
DMU_{10}	1.0000	0.7907	0.6620	0.7907	0.8372	0.6620

Table (8), Meta Efficiency and Meta Malmquist Index for DMUs in Trade Offs models of DEA.

Unit	$\theta_{\mathrm{jt}}^{\mathrm{m}(\mathrm{TO})}$	$\theta_{\mathrm{jt}+1}^{\mathrm{m}(\mathrm{TO})}$	$\theta_{\mathrm{jt}+2}^{\mathrm{m}(\mathrm{TO})}$	$\mathrm{MI}_{\mathrm{t}, \mathrm{t}+1}^{\mathrm{j}(\mathrm{TO})}$	$\mathrm{Mi}_{\mathrm{t}+1, \mathrm{t}+2}^{\mathrm{j}(\mathrm{TO}}$	$\mathrm{MI}_{\mathrm{t}, \mathrm{t}+2}^{\mathrm{j}(\mathrm{TO})}$
DMU_{1}	0.1935	0.1779	0.2130	0.9196	1.1971	1.1009
DMU_{2}	1.0000	1.0000	0.5536	1.0000	0.5536	0.5536
DMU_{3}	0.9352	0.8368	0.9278	0.8948	1.1088	0.9921
DMU_{4}	0.4920	0.3534	0.3457	0.7183	0.9781	0.7026
DMU_{5}	0.4835	0.3891	0.3667	0.8048	0.9423	0.7584
DMU_{6}	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
DMU_{7}	0.3490	0.2920	0.3063	0.8366	1.0489	0.8775
DMU_{8}	0.2237	0.2035	0.1728	0.9097	0.8495	0.7727
DMU_{9}	0.4612	0.3662	0.3314	0.7940	0.9050	0.7185
DMU_{10}	0.7609	0.6124	0.6160	0.8049	1.0057	0.8095

8. Conclusion

Trade Off technology is used o evaluate in Malmquist, Expanded Malmquist and Meta Malmquist productivity the validity of models is shown by numerical example and a set of data from a commercial bank is used and the result from the point board of directory is quite satisfactory.
The above mation models may be extended for multicative models and the models for non redial efficiency also the Malmquist and Expanded meta Malmquist may be used for cost efficiency and revenue efficiency.

References

[1]. Banker R. D., Charnes A. and Cooper W.W., (1984) Some models for estimating echnical and scale inefficies in Data Envelopment Analysis, Management Science 30, 1078-1092.
[2]. Charnes, A., Cooper, W.W., Rhodes, E., 1978. Measuring the efficiency of the decision making units.European Journal of Operational Research 2, 429-444.
[3]. Cooper, W.W., Seiford, L.M., Tone, K., 2000. Data envelopment analysis: A comprehensive text with models, applications, references, and DEA - solver software . Kluwer Academic Publisher, Dordrecht.
[4]. Fare, R., Grosskopf, S., Lindgren, B., Roose, P., 1992. Productivity change in Swedish analysis pharmacies 19801989: A nonparametric Malmquist approach. Journal of Productivity 3, 85-102.
[5]. Fare, R., Grosskopf, S., Norris, M., Zhang, A., 1994. Productivity growth, technical progress, and efficiency changes in industrial country American Economic Review 84, 66-83.
[6]. Farrell. M.T. (1957), '"The Measurement of Productive Efficiency," Journal of the Royal Statistical Society Series A , 120, III, pp.253281.
[7]. Podinovski, V.V., 2004. Production trade-offs and weight restrictions in data envelopment analysis. Journal of the Operational Research Society 55, 1311-1322.
[8]. Podinovski, V.V., 2007a. Improving data envelopment analysis by the use of production trade-offs. Journal of the Operational Research Society 58, 1261-1270.
[9]. Podinovski, V.V., 2007b. Computation of effcient targets in DEA models with production trade-offs and weight restrictions. European Journal of Operational Research 181, 586-591.
[10]. Podinovski, V.V., Thanassoulis, E., 2007. Improving discrimination in data envelopment analysis: Some practical suggestions. Journal of the Operational Research Society 28, 117-126.
[11]. Portela, M.C.A.S and Thanassoulis, E.(2006), Malmquist index using geometric distance function (GDF). Application to a sample of Portuguese bank branches, Journal of Productivity Analysis 25, 25-41.
[12]. Portela, M.C.A.S and Thanassoulis, E.(2001), Decomposing school type efficiency, European Journal of Oprational Research, 132/2, 114-130.
[13]. Portela, M.C.A.S and Thanassoulis, E.(2008), A circular meta malmquist index for measuring productivity, Journal of Aston Business School research, ISBN NO :978-1-85446-724-6.
[14]. Thanassoulis E. and Portela, M.C.A.S (2002) School Outcomes: Sharing the responsibility between pupil and school, Education Economics 10/2, 183-207.

11/10/2012

