
Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2480

Evaluation of non-functional characteristics of web-based systems modeled and designed using aspect-

oriented technology by aspectual software architecture analysis method (ASAAM)

Davood Karimzadganmoghadam
1
, Davood Vahdat

2
, Mohammad Pira

3
, Reza Askari moghadam

4

1.
 Department of IT, Payame Noor University, Tehran, Iran, d_karimzadgan@pnu.ac.ir

2.
 Department of IT, Payame Noor University, Tehran, Iran, vahdat@pnu.ac.ir

3.
 Department of IT, Payame Noor University, Tehran, Iran, Mohammadpira408@yahoo.com, Corresponding

Author, Msc
4.
 Faculty of New Sciences and Technologies University of Tehran, Tehran, IR Iran, P.O.Box:14395-1561,

r.askari@ut.ac.ir

Abstract: Despite the importance and well-known status of non-functional requirements in the success of Web

applications in the field of Web Engineering, they do not receive much attention. In many cases, these requirements

remain pending, unconsidered, un-analyzed and undesigned after determining in the requirements engineering phase

until completing application implementation. The aim of the present study is to model and analysis the non-

functional requirements in designing Web applications. This will be done to ensure providing an architecture which

supports the necessary quality characteristics of these applications. To realize the nature of these requirements, we

focused on a large industrial case study which is a Web-based organizational application. It was observed that the

majority of non-functional requirements in the Web applications architecture are intersecting concerns which should

be modeled separately. However, this issue has not received necessary attention. Finally, the proposed architecture

has been presented and evaluated.

[Davood Karimzadganmoghadam, Davood Vahdat, Mohammad Pira, Reza Asgarimoghadam. Evaluation of non-

functional characteristics of web-based systems modeled and designed using aspect-oriented technology by

aspectual software architecture analysis method (ASAAM). Life Sci J 2012;9(4):2480-2486]. (ISSN: 1097-

8135). http://www.lifesciencesite.com. 366

Keywords: Concern; Requirement; Web-pages; System Architecture; Continuity; Aspect.

1. Introduction

Keep pace with technological advances, the

dependence on information technology is increased

and relationships become more complex. Since rapid

and safe access to information is vital where success

or failure of business and industry depends on it,

Web-based systems have a special place. Using this

technology, experts and organizations managers can

access to needed information from anywhere in the

world. Also, using this technology, organizational

costs reduce significantly which is considered as an

important issue.

Web engineering suggests an agile but also

systematic framework for constructing high quality

applications and industrial Web-based systems

(Pressman, 2010). In developing these systems, we

deal with functional and non-functional requirements.

Functional requirements represent system’s

performances. In fact, functional requirements are the

concrete and usable system capabilities so that the

user could perform its duties in the organization.

Non-functional requirements or quality

characteristics are related to the system performance.

These requirements are rather concerned by system

developers. If these two requirements are not

dependent and modeled, the costs of system

development and maintenance increase significantly.

Concern is an aspect of a problem which is

important for stakeholder or stakeholders (Mancona,

2003). Concerns are often confused with

requirements, although they are different, basically

(Jacobson and Pan-Wei, 2005). Intersecting concerns

are observed when the functional and non functional

concerns are intertwined and not be able to module

separately. Finding the intersecting concerns is a

difficult task, thus designing and developing the

system becomes difficult (Francescomarino and

Tonella, 2009). Object-oriented approach is the

dominant method for designing the systems. But,

despite all its advantages and privileges, it is not able

to module non-functional concerns, properly. Finally,

it is observed that the non-functional concerns are

scattered in the functional concerns.

Some techniques have been proposed to

resolve this drawback of object-orientation including

aspect-oriented programming (AOP), combination

filters (CF), multidimensional separation of concerns

(MDSOC) and adaptive programming (AP)

(Chitchyan and Ruzanna, 2005). In the present study,

aspect-oriented programming was selected. Since the

language of developing this subsystem is Java, the

AspectJ programming language was used. This has

added the object-orientation concepts to Java.

Aspect-oriented programming was introduced by

http://www.lifesciencesite.com/

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2481

Mr. Gregory Kyzals and his group in 1997 (Kiczales

and Hilsdale, 2001). Aspect-oriented programming is

a technology which supports separation of

intersecting concerns (Augusto and Lemos, 2011).

With this language, functional and non functional

concerns can be modeled. Thus, the process

considerably lowers the cost of system maintenance.

It also facilitates understanding architecture and the

system code for program developers and improves

system performance and security.

Software architecture is defined as a set of

important design decisions about the system

(Medvidovic and Dashofy, 2007). Software

architecture plays a fundamental role in overcoming

the inherent difficulties of developing large scale

complex software systems (Kiczales and Lamping,

1997).

Aspectual Software Architecture Analysis

Method (ASAAM) was selected for evaluating the

system architecture (Pressman, 2010). Using this

method, we can assess the improvement of the

architecture compared to the original architecture. At

the end of the study, with the help of calculations, it

is shown that the system architecture has been

improved significantly compared to the original

architecture.

2. Case Study

"Comprehensive web-based organizational

resources planning system” is a medium scale web-

based application. This system consists of 11

subsystems including the financial management,

production management, sales management,

purchasing management, warehouse management,

human resources management, management,

maintenance, quality control, project management

and office automation. The system has been designed

based on architectural patterns of Layering, Domain

Model, Data Mapper and MVC in order to exploit in

organizations with 3,000 to 4,000 personnels. Fig. 1

shows the system architecture.

Due to the enormous volume of this web

application, much attention has been paid to human

resources management subsystem during conducting

present study. The process model for web

applications engineering is an agile version of the

general software process model. System development

process is an agile and model-oriented process. This

process develops the system in terms of functional

requirements systematically. However, this process

of development acts occasionally for providing non-

functional requirements. So that after implementation

of each functional scenario, the mechanisms of

providing non-functional requirements are

programming in the code modules of the scenario

repeatedly, non-coherently. The basic architecture of

the case study is shown in Fig. 3.

Figure 1. Layered architecture of the comprehensive

web-based organizational resources planning system

3. Redesign

The case study was redesigned using an

aspect-oriented process presented for developing

web-based organizational applications considering

the two non-functional requirements of security and

response-time. These requirements are important in

the current situation of the system. According to

improvement process, after diagnosis of non-

functional requirements with being aspect capability,

their subsystem scenarios, i.e. the operational non-

functional and controllable non-functional concerns

must be compiled. Table 1 represents the

corresponding scenario of these concerns for the case

study.

After compiling these scenarios, the web-

based organizational application architecture is

developed by defining aspect-oriented components

for moduling non-functional requirements with

aspecting capabilities intersecting concerns of the

application architecture. These components are

described using UML 2.0.

In the next step, each modeled concern has

been implemented using aspect-oriented

programming independent of the core functional

concerns. Fig. 3 shows a part of simplified sample

code.

In the basic architecture, the components

including core functional concerns, operational non-

functional and controllable non-functional are

intersecting i.e. the scattering and complexity of the

concerns is observed throughout the architecture.

The architecture of this subsystem has been

improved by aspect-oriented injection of non-

functional requirements to its development process.

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2482

The obtained architecture is shown in Fig. 4 as the

proposed architecture.

The architecture obtained from this

improved process consists of two orthogonal layers.

The first layer is the basic architecture of Web

application. This layer is developed using

conventional method of Web Engineering merely to

achieve functional goals based on core functional

concerns. The second layer is responsible for

modeling non-functional application requirements as

aspect-oriented components. Finally, the two layers

are combined together by provided infrastructures in

the aspect-oriented programming after independent

development, and represent the final product. It is

expected that the new architecture be more improved

than the previous architecture version.

Table 1: A functional scenario
Scenario No S120

Scenario

Type
Core non-functional concern

Scenario

Title
Calculation of group salary

Scenario

Description

At first, a list of organization

employees is displayed based on required

filters. Then, some (or all) employees are

selected from the list. Salary calculation is

performed for each employee according

the following procedure:

1 – a blank salary list corresponding to the

current salary period is constructed for

each employee.

2 - Employment certificate of the

personnel which is active in the current

salary period is retrieved.

3 - A list of salary elements defined in

the employment certificate is retrieved.

4 – A salary item is constructed for each

retrieved salary elements. This item is

determined based on the specified the

calculation method.

4. Evaluation Method Selection

Evaluation of the software is critical for

meeting the quality requirements of the system. In

software projects, as soon as a bug discovered in the

project, as the costs of correcting and maintenance of

the software will be reduced. Thus, assessment has a

special place. Basically, architecture evaluation is

performed after defining the architectural decisions

before the implementation phase. Software

architecture evaluation can be done in two times:

early, late (Clements and Kazman, 2006). Early

architecture evaluation can be carried out when

architecture not still fully implemented. The late

architecture is performed when the architecture has

been well designed.

The basic parameters of the software

architecture evaluation include: minimum coupling,

maximum continuity, completeness, being

understood, adaptability, realism (Garland and

Anthony, 2003).

Coupling is the number of dependencies

between two subsystems. If dependencies between

the subsystems were less, the subsystems are

independent. Continuity is the number of

dependencies within components of a subsystem. If

the subsystem consists of a lot of connected

components, its continuity is high. If the subsystem

consists of irrelevant components, its continuity is

low. The software architecture must be completed to

meet all functional and non-functional requirements

of the system. The software architecture must be

understandable for various stakeholders. The

components of the software architecture must be

compatible and consistent. Finally, the software

architecture must be implementable.

The following items are of the advantages of

evaluation: gathering the project stakeholders,

prioritizing conflicting objectives, obligation to

provide a clear architectural, improvement of

software architecture (Clements and Kazman, 2006).

There are four techniques categories for evaluating

software architecture which are briefly described.

These techniques are: experimental techniques,

simulation, questioner and measurement techniques.

In experience-based techniques, evaluations

are carried out based on knowledge and experience of

developers and evaluators according to the past

projects. This method is based on interviews with

system stakeholders and use of their experiences

(Jeong and Kim, 2006). Because of inconsistencies in

stakeholders' statements and non-technicality of the

results of interviews and evaluations, addressing this

method is neglected in the present study.

The protype is used in the simulation

technique. Prototype is a sample which provides non-

performance user interface. The users may check it to

ensure providing their requirements by the system.

The simulation method is used to measure the

performance. These methods need to implement

components of the architecture and simulating other

components for architecture implementation.

Therefore, they need information about the

underdevelopment system which is not available

during the development and architectural design.

Also, these methods are expensive. Moreover, many

important features of the system, especially non-

functional features such as storage capacity,

reliability and error educability cannot be

instantiated.

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2483

Figure 2. Basic architecture of human resources management subsystem

Figure 3. Part of the applied code for salary calculation in Model Controller layer after applying the proposed

aspect-oriented development precess

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2484

Measurement methods use mathematical

equations and expressions. These methods evaluate

the software architecture based on measurable quality

characteristics. Measurement techniques express

questions with measurable answers. However,

because measuring the questioned values is a difficult

task in the software design stage and it is limited to

some small qualitative characteristics, these

techniques are not widely used as questioning

techniques.

In questioning techniques, questions are

expressed about the quality of the architecture (These

questions can be expressed in the form of checklists

or scenarios). Because these questions are qualitative,

their answers cannot be accurately determined. But,

they can be used for relative comparison of several

items. In this study, the questioning technique was

used for evaluation.

Questioning techniques consist of three

techniques including scenarios, questionnaires and

checklists. Scenario is a technique for determining

the requested quality of the architecture. Six

components are available for consistenting and

normalizing different scenarios to the standard

scenario. This will facilitate the evaluation processes

i.e. stimulus source, stimulus, environment, product,

response, response measurement (Clements and

Kazman, 2006).

One of the advantages of the scenarios is

that they are specific to a particular system. Each

software system needs a certain degree of quality

with respect to their duties. Therefore, the expected

quality level of the system should be determined

according to the type of system tasks. Architecture

evaluation by scenarios is such that it is determined

whether the architecture can meet the desired

scenarios or not.

The SAAM can be considered as the first

scenario-based software architecture evaluation

method. This architecture evaluation method is used

in terms of non-functional requirements. The goal of

SAAM is to provide a method for evaluating the

quality features of the architecture versus the

available documentation of the system requirements.

If the SAAM is employed for the architecture, the

strengths and weaknesses of the architecture, and the

failed points in the terms of change capability will be

determined. If the method is used for two or more

architectures, it will compare the architectures in

terms of change capability.

For evaluation by the SAAM, the non-

functional scenarios that need to be evaluated must

be identified and numbered. The software

architecture should be briefly outlined. If more

details of the architecture are needed during the

evaluation, the architecture will be developed.

At the end of the SAAM evaluation,

mapping between scenarios and architecture and its

changing costs will be presented in order to identify

sensitive areas of the architecture which have the

potential to change. Also, understanding of the

system performance is completely done.

Furthermore, a comparison between the architectures

and the level of their support from the system

performance is presented at the end of evaluation.

Assessment Team of SAAM: Assessment

Team is composed of three groups:

i - External stakeholders are the owners and users

of the system who are involved in providing

commercial purposes.

ii - Internal stakeholders: system evelopers

including the architect and the architectural team

who have direct role in software architecture

providing and analyzing.

iii – SAAM Team: the architecture evaluation

team which do the evaluation task.

Before implementing SAAM, a brief

explanation is given about the system functionality

and the main purpose of the system. Then evaluation

process is started. SAAM consists of 6 stages i.e.

scenario development, architecture description,

classification and prioritization of scenarios,

evaluating scenarios, obtaining communication

between the scenarios and providing the overall

assessment.

ASAAM has been developed by expanding

the SAAM method in order to identify architectural

features using the scenarios. Fig. 5 shows the

ASAAM activities.

Figure 5. Activity of ASSAM (Tekinerdogan, 2004)

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2485

Figure 4. The proposed architecture

Table 2: A corrective maintenance scenario

Scenario No S300

Scenario Type Corrective maintenance scenario

Relevant

Scenario
NFR-1 (Security)

Scenario

Description

The has Permission On (username,

action) method does not consider the user

role in the permission scenario, while the

user may have several roles in the

system. Neglecting this may cause

problem in the system. Because if the

user has multiple roles, this method

considers only his first role.

Determination of the Right of access

should be done separately for each user

role.

Response

This method should be corrected as has

Permission On (username, action and

role).

5. Evaluation of the basic and proposed

architectures

Two architecture design approaches of the

case study were evaluated using ASAAM in terms of

maintenance capability.

Four scenarios categories including

scenarios for corrective maintenance, scenarios for

perfective maintenance, scenarios for adaptive

maintenance, and scenarios for preventive

maintenance are defined in order to evaluate the

maintenance capability. A typical scenario is shown

in Table 2.

In order to compare the basic and proposed

architectures, each maintenance capability evaluation

scenario was weighted considering the cost of the

changes. The weight of each scenario is calculated

using the following equation. The results are listed in

Table 3. The average cost of each maintenance

capability evaluation scenario was calculated. The

results are listed in Table 4 as the costs of

maintenance capability.

Cost =[(L * M * C) / T] * 100

Cost: the average cost of change

L: the number of affected layers of the

architecture

M: the average number of the affected modules of

each component in each layer

C: the number of affected components

T: total number of the subsystem modules

6. Conclusion and Summary

In the proposed approach, using the concept

of aspect, the core functional concerns, operational

non-functional concerns and controllable non-

functional concerns were separated in the process of

developing Web applications. The obtained

architecture firstly fulfills the principle of separation

of concerns better than before. Secondly, non-

functional requirements with aspectual capability are

clearly described. Therefore, it is expected the new

architecture has higher maintenance capability than

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2486

the old architecture. The results of evaluation and

testing performed on the case study as a web-based

organizational application shows that the system

maintenance capability wille grow significantly with

increasing adhesion of architectural components and

removal of dependence of hundred system modulus

to non-functional requirements as intersecting

concerns through the use of aspects. Thus, according

to evaluation results and by comparing these two

architectures, it can be concluded that the use of

aspectual approach in modeling non-functional

requirements in designing web applications result in

increasing the maintenance capability of the

application.

Table 3. Comparison of basic and aspect-oriented architectures in terms of maintenance costs

Scenario No
Average maintenance cost of each

module in basic architecture

Average maintenance cost of each

module in aspect-oriented

architecture

S300 [(4*4*6)/96]*100 [(4*1*1)/104]*100

S301 [(3*4*6)/96]*100 [(3*1*1)/104]*100

S302 [(1*2*6)/96]*100 [(1*1*1)/104]*100

S303 [(3*4*6)/96]*100 [(3*1*1)/104]*100

S304 [(3*4*6)/96]*100 [(3*1*1)/104]*100

Table 4. Average cost of each maintenance capability scenarios categories

Maintenance activity
Average cost in basic architecture

(scale: 100)

Average cost in aspect-oriented

architecture (scale: 100)

Corrective maintenance 87.5 3.4

Perfective maintenance 43.7 1.9

Adaptive maintenance 87.5 3.4

Preventive maintenance 25 1

Corresponding Author:

Msc. Mohammad Pira

Department of IT

Payame Noor University

Tehran, Iran

E-mail: Mohammadpira408@yahoo.com

References
1. Roger S. Pressman. “Software Engineering: A

Practioner's Approach”, Seventh Edition, McGraw-

Hill Higher Education, 2010.

2. Otávio Augusto, Lazzarini Lemos. “A pointcut-based

coverage analysis approach for aspect-oriented

programs”, Information Sciences, Volume 181, Issue

13, 1 July 2011.

3. Nenad Medvidovic, Eric M. Dashofy, “Moving

architectural description from under the technology

lamppost, Information and Software Technology, Vol.

49, No. 1, pp. 12-31, Jan 2007.

4. Chitchyan, Ruzanna, “Survey of Analysis and Design

Approaches”, AOSD-Europe., Deliverable D11, 2005.

5. Chiara Di Francescomarino, Paolo Tonella,

“Crosscutting Concern Documentation by Visual

Query of Business Processes”, Lecture Notes in

Business Information Processing, FBK-IRST, Trento,

Italy, 2009.

6. Kandé, Mohamed Mancona. “A Concern-Oriented

Approach to Software Architecture”, PhD Thesis,

Swiss Federal Institute of Technology (EPFL),

Lausanne, Switzerland, 2003.

7. Ivar Jacobson, Pan-Wei NG. “Aspect-Oriented

Software Development with Use Cases”, Addison

Wesley Professional, 2005.

8. Gregor Kiczales, John Lamping, “Aspect-Oriented

Programming”, In Proceedings of the European

Conference on Object-Oriented Programming

(ECOOP), 1997.

9. Gregor Kiczales, Erik Hilsdale, “An Overview of

AspectJ”, In Proceedings of the European Conference

on Object-Oriented Programming (ECOOP), Pages

327-353, 2001.

10. Paul Clements, Rick Kazman, “Evaluating software

architectures: methods and case studies”, Addison-

Wesley, 2006.

11. Jeff Garland, Richard Anthony, “Large-Scale

Software Architecture, A Practical Guide using

UML”, John Wiley & Sons ltd, 2003.

12. Gu-Beom Jeong, Guk-Boh Kim, “A Study on

Software Architecture Evaluation”, Springer Berlin /

Heidelberg, 2006.

13. Bedir Tekinerdogan, “ASAAM: Aspectual Software

Architecture Analysis Method”, In Proceedings of the

Fourth Working IEEE/IFIP Conference on Software

Architecture (WICSA), 2004. pp. 5-14.

10/5/2012

