Finite Groups With At Most Nine Non T-Subgroups

Muhammad Arif¹, Muhammad Shah¹, Saeed Islam¹, Khalid Khan²

¹Department of Mathematics, Abdul Wali Khan University Mardan, Pakistan ²Department of Science and Information Technology Govt; Peshawar, Pakistan <u>marifmaths@awkum.edu.pk</u> (M. Arif), <u>shahmaths_problem@hotmail.com</u> (M. Shah), <u>proud_pak@hotmail.com</u> (S. Islam), <u>khalidsa02@gmail.com</u> (K. Khan)

Abstract. In this short note, we extend the characterization of soluble groups by using the number of their non-T-subgroups and also we classify finite groups having exactly nine non-T-subgroups. [Arif M, Shah M, Islam S, Khan K. Finite Groups with at most nine non T-Subgroups. *Life Sci J* 2012;9(4):2387-2389] (ISSN:1097-8135). http://www.lifesciencesite.com. 354

Key words. Finite soluble groups, Normal subgroups, T-subgroups

1. Introduction

Group is an algebraic structure provides information about operations and relations satisfying certain algebraic conditions. Group and its algebraic properties provides many application in various fields like chemisty [8], Physics [9] and Computer sciences [10-23]. In this paper we concentrate on A group Gis T- group when its every subnormal subgroup is normal. Thus T-groups are exactly those groups in which normality is a transitive relation. This structure has been studied by many authors such as Gaschutz [5], Zacher [4] and Robinson [6]. Robinson characterized finite soluble groups by T-groups. He proved that if all subgroups of a finite group are T-groups then G is soluble. For details we refer to Robinson [2].

Arif et all characterized finite soluble groups by number of non-T-subgroups. In [6] this has been proven that if a finite group G has at most 4 non-T-subgroups then the group will be soluble. It has also been shown there that finite groups having exactly five non-T-subgroups may not be soluble.

The purpose of this present note is to extend the characterization of finite groups up to 9 non-T-subgroups of group G. Thus we prove if G is a finite group all whose proper subgroups are T-groups except for n = 6, 7, 8, then G is soluble see Theorem 1. We also prove that if G is a finite group such that G contains exactly 9 non-T-subgroups then either G is soluble or G is isomorphic to SL(2, 8) see Theorem 2.

Since our characterization is based on the number of non- T-subgroups so in Table 1 we present the details of the number of non-T-subgroups of each non-soluble group up to order 900 for the sake of completeness and for future use. We have used the following two GAP [3] functions to construct this table. In Table 1, O denotes the order of non-soluble groups, N_1 denotes the number of non-soluble groups of the order given in column first and N_2 denotes the number of non-T-subgroups of each non-soluble subgroup of the group given in column second.

function(G):= NrNonTSubgroups local allsubgrps, i; allsubgrps:=Subgroups(G); for i in all subgrps do if IsSubnormal(G.i) then if not IsNormal(G,i) then return false; break: fi; fi; od; return true; end ; function(G):= NrNonTSubgroups local allsubgrps; allsubgrps:= Subgroups(G); return Number(allsubgrps, $t \rightarrow \text{not IsTGroup}(t)$)); end;

1. Preliminaries

The following results from [7] are needed.

- (1). If G is a finite simple group such that G has exactly n non-T-subgroups $(n \ge 1)$, then G is isomorphic to a subgroup of S_n [7, Theorem 2.2].
- (2). Let G be a finite group with exactly n non-T-subgroups and suppose that any finite group with exactly m non-T-subgroups is soluble for $1 \le m \le n-1$ [7, Theorem 2.3].

Table 1. Number of non-T-subgroups of each	
non-soluble subgroup.	

0	N_1	N_2	
60	01	05	
120	03	05,25,10	
168	01	49	
180	01	30	
240	08	25,50,30,15,30,10,100,25	
300	01	16	
336	03	49,91,175	
360	06	30,115,90,160,70,70	
420	01	25	
480	26	35,75,55,20,55,35,175,371,126,220,141,246,100,	
		225,371,115,201,40,145,271,190,30,259,	
		25,515,80	
504	02	09,154	
540	02	55,160	
600	05	16,62,142,58,38	
660	02	55,10	
672	08	217,161,91,301,231,175,385,833	
720	23	115,90,150,130,200,160,270,110,90,380,110,110,	
		130,70,455, 215,190,405,340,333,600,210,210	
780	01	10	
840	06	10,98,50,170,50,20	
900	01	72	

2. Main results

The following guarantees the solubility of a finite group having exactly n non-T-subgroups, $6 \le n \le 8$.

Theorem 1. If G is a finite group all of whose proper subgroups are T -groups except for n = 6,7,8, then G is soluble.

Proof. Let G be an insoluble group containing exactly п proper non T-subgroups, $L = \{H_1, H_2, \cdots, H_n\}.$ Clearly H_i each contains fewer than n proper non T-subgroups and so is soluble by the above result 2, no H_i can be normal. By the result 1, there is a homomorphism $f: G \to S_n$. Let K be the kernel of f. Then K cannot contain any of the H_i (since $K \leq \bigcap H_i$) and so K is soluble and in particular is a T-group. Then we must have G/Kisomorphic to an insoluble subgroup of S_n . But S_6 , S_7 , S_8 has no non soluble subgroups which have 6,7,8 non T-subgroups respectively, a contradiction. Hence G is soluble for n = 6, 7, 8.

Theorem 2. If G is a finite group such that G contains exactly 9 non T-subgroups. Then either G is soluble or G is isomorphic to SL(2,8).

Proof. Suppose that there is an insoluble group with at most 9 non-T-subgroups and let G be a minimal counterexample. Since the property is preserved under taking subgroups and quotient groups, G must be simple. So, by result 1, G is isomorphic to a non soluble subgroup of S_9 and since SL(2,8) is the only non-soluble subgroup of S_9 which have 9 non-T-subgroups, therefore Gis isomorphic to SL(2,8).

References

- [1]. G. Karpilovsky, Group Representations Vol 2, North-Holland Mathematical Studies, 1993, Elsevier, Amsterdam, London, New York.
- [2]. D. J. S. Robinson, A course in the theory of groups, Graduate text in Mathematics 80, Springer, New York 1982.
- [3]. The GAP, http://www.gap-system.org. GAP, Groups Algorithms and Programming, Version 4.4.12, 2008.
- [4]. G. Zacher, Caratterizzione dei t-grouppi .niti risolubili, Ricerche Math. 1 (1952) 287-294.
- [5]. W. Gaschutz, Gruppen in denen das Normalteilersein transitiv ist, J. Reine Angew. Math. 198(1957), 87-92.
- [6]. W. Gaschtitz, Groups in which normality is intransitive relation, P. Journal of Math. Vol. 313 (1969), 777-785.
- [7]. M. Arif, A. Ali and S. I. Ali Shah, Finite groups with at most five non-T-subgroups, Acta Universitatis Apulensis, 25(2011), 245-248.
- [8]. March, Jerry (1985), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (3rd ed.), New York: Wiley, ISBN 0-471-85472-7
- [9]. Dresselhaus, MS., Applications of Group Theory to the Physics of Solids, Springer, 2002.
- [10]. Khan, S. A., N. A. Zafar, et al. (2011). "Petri net modeling of railway crossing system using fuzzy brakes." International J. Phy. Sci 6(14): 3389-3397.
- [11]. M, F. and S. A. Khan (2012). "Specification and Verification of Safety Properties along a Crossing Region in a Railway Network Control." Applied Mathematical Modelling, http://dx.doi.org/10.1016/j.apm.2012.10.047
- [12]. Raza, M. I., Q. J. Zaib, et al. (2012). "Meticulous analysis of Semantic Data Model -An optimal approach for ERD." J. Basic. Appl. Sci. Res. 8(2): 8344-8354.
- [13]. Yousaf, S., N. A. Zafar, et al. (2010). Formal analysis of departure procedure of air traffic control system, IEEE.

- [14]. Zafar, N. A., S. A. Khan, et al. (2012). "Formal Modeling towards the Context Free Grammar." Life Science Journal 9(4).
- [15]. Zafar, N. A., S. A. Khan, et al. (2012). "Towards the safety properties of moving block railway interlocking system." Int. J. Innovative Comput., Info & Control.
- [16]. Ahmad, F. and S. A. Khan (2012)."Module-based architecture for a periodic job-shop scheduling problem." Computers & Mathematics with Applications.
- [17]. Ali, G., S. A. Khan, et al. (2012). "Formal modeling towards a dynamic organization of multi-agent systems using communicating X-machine and Z-notation." Indian Journal of Science and Technology 5(7).
- [18]. Gul Afzal Khan, S. A. K., Nazir Ahmad Zafar, F.A.S.I. (2012). "A Review of different Approaches of Land Cover Mapping." Life Sci J 9(4).

10/14/2012

- [19]. Khan, S. A., A. A. Hashmi, et al. (2012)."Semantic Web Specification using Z-Notation." Life Science Journal 9(4).
- [20]. Khan, S. A. and N. A. Zafar (2007). "Promotion of local to global operation in train control system." Journal of Digital Information Management 5(4): 231.
- [21]. Khan, S. A. and N. A. Zafar (2009). Towards the formalization of railway interlocking system using Z-notations, IEEE.
- [22]. Khan, S. A. and N. A. Zafar (2011). "Improving moving block railway system using fuzzy multi-agent specification language." Int. J. Innov. Computing, Inform. Control 7(7).
- [23]. Khan, S. A., N. A. Zafar, et al. (2011).
 "Extending promotion to operate controller based on train's operation." International J. Phy. Sci 6(31): 7262 - 7270.