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1. Introduction 

Many initial and boundary value problems can 
be transformed into integral equations and in many 
cases, we cannot solve this equations analytically to 
find an exact solution. So that by using numerical 
methods we try to find the approximate solution of 
these equations. Several authors have considered the 
numerical solution of the integral equations with 
different methods ([1 ,2,5,7,10,11]). 

 This paper consists of two parts. In part I, we 
study the numerical solution of system of linear 
Fredholm integral equations of the second kind by 
means of Sinc-collocation method, this method 
consists of reducing the system of Fredholm integral 
equations to a set of algebraic equations with 
unknown coefficients by using the properties of Sinc 
function. In part II, we study the numerical solution 
of linear Fredholm integral equations by shifted 
Chebyshev polynomial method which transforms 
Fredholm integral equation into a matrixequation. 
 
Part I: Numerical solution of system of linear 
Fredholm integral equations by Sinc- collocation 
method 
       This part consists of three sections. Section 1, 
outlines some of the main properties of Sinc function 
which are necessary for the formulation of the 
problem. In section 2, we illustrate how Sinc- 
collocationmethod may be used to replace system of 
linear Fredholm integral equations into system of 
linear algebraic equations. Finally in section 3, we 
will illustrate the method by some numerical 
examples. 
      Now, we consider the system of linear Fredholm 
integral equations of the form: 
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is the unknown function )(x  F(x) and H(x, t) are 

known functions and to be determined. 

 

1. Sinc function and its properties [3] 

The Sinc function is defined on the whole real line 

by:  
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Now, for h > 0 and integer j , we define the jthSinc 
function with step size h by: 

)3.1(.,2,1,0,
/)(

)/)(sin(
))(,( 




 j

hjhz

hjhz
zhjS





is given by khzk   The Sinc function form for the 

interpolation points 
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, whenever this series   is called the Whittaker 

cardinal expansion of  

is approximated by using the finite number of terms 

in  converges ,  

(1.5). For positive integer N, we define 
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are Dz  for  For the Sinc method, the basis 
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from the composite translated Sinc functions  
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2. The approximate solution of system of 
Fredholm integral equations 

 

       We consider the ith equation of (1.1): 
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Using (1.17) and (1.18) we obtain 
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are n×(2N +1) unknowns 

to be determined in (1.19). In order to determine these 
n × (2N + 1) unknowns, we apply the collocation 
method. Thus by setting  

areSinc-collocation points: kx in (1.19) where 
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From (1.19) and (1.20) we obtain the following 
system of n × (2N + 1) 

linear equations with n × (2N + 1) unknowns 
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which are the square matrices of order (2N + 1) × (2N 

+ 1), then the system of can be expressed in a j  

linear equations (1.21) unknown coefficients 

matrix form 
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By solving the linear system (1.22), we obtain an 
approximate solution 

of the system of integral equations )( xj
corresponding to the exact solution 

(1.1) at the Sinc points. 

 

3. Numerical examples 

       In this section we will illustrate the above results 
by some examples. The examples have been solved 
by presented method with different values of N. 

The errors 

.,2/,1
N

hyieldswhichdand


 

In all examples we take 

are reported on the set of Sinc grid points 

.,,,
1

,},,,,{ 0 NNk
e

bea
xxxxS

kh

kh

kNN  



 

 

The maximum error on the Sinc grid points is 
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Example 1. 

Consider the following system of Fredholm integral 
equations 
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We solved Example 1 for different values of 
N and the maximum of absolute errors on the Sinc 
grid Sare tabulated in Table 1. This table indicates 
that as N increases the errors are decreasing more 
rapidly where excellent results are shown.  

 

Example 2. 

Consider the following system of Fredholm 
integral equations 
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The approximate solution is calculated for 
different values of N and the maximum of absolute 
errors on the Sinc grid S are tabulated in Table 2.  

 

Part II: Numerical solution of linear Fredholm 
integral equationsby shifted Chebyshev 
polynomial method 

      This part consists of two sections. In section 1, we 
present shifted Chebyshev polynomial method. 
Section2, is devoted to introduce the numerical 
solution of three examples by using shifted 
Chebyshev polynomial method and Sinc- collocation 
method. 

 

Consider the following linear Fredholm integral 
equation: 
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is unknown function. 

 

1. Shifted Chebyshev polynomial method 

         In this section we will study the approximate 
solution of equation (2.1) by means of shifted 
Chebyshev polynomial method.  

of equation (2.1) can be represented by truncated 
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By substituting from Chebyshev collocation points 
defined by (2.4) into equation (2.1), we obtain a 
matrix equation of the form  
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When we substitute from Chebyshev collocation 

points (2.4) into (2.3), the becomes matrix  

for i = 0, 1, ...,N , j = 0, 1, ...,N and )( ixI  

Substituting from (2.3) and (2.5) in  

using the following relation [9 ],  
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Chebyshev coefficients matrix in the following form: 
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equation (2.1) transforms into a matrix equation 
which is given by: 
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unknown Chebyshev coefficients. Thus the unknown 
can be computed, hence we obtain the approximate 
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Particularly : If we apply Sinc-collocation method 
which is given in part I in case of linear Fredholm 
integral equation (2.1) we obtain the following 
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2. Numerical examples 

In this section we present three examples to illustrate 
the above results. 

 

Example 1. 

Consider the following linear Fredholm 
integral equation of the second kind 
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The numerical solution of equation (2.12) in case of 
shifted Chebyshev polynomial method and Sinc- 
collocation method is given in Tables 3 and 4. 

 

Example 2. 

Consider the following linear Fredholm integral 
equation with exact solution 
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The numerical solution of equation (2.13) in case of 
shifted Chebyshev polynomial method and Sinc- 
collocation method is given in Tables 5 and 6. 

 

Example 3. 

Consider the following linear Fredholm integral 
equation with exact solution 
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The numerical solution of equation (2.14) in case of 
shifted Chebyshev polynomial method and Sinc –
collocation method is given in Tables 7 and 8.  

 

Table 1. Numerical results of Example 1 in part I 


)(

2
hE S

  


)(
1

hE S
  

h N 

1.346648 E−3 3.150485 E−3 1.404963 5 

2.301931E−4 1.827180 E−4 0.9934589 10 

7.402897 E−5 3.388524 E−5 0.8111557 15 

4.351139 E−6 6.556511 E−6 0.7024815 20 

7.152557 E−7 2.384186 E−7 0.6283185 25 

1.192093 E−8 7.078052 E−8 0.5735737 30 

7.326145 E−9 4.103521 E−9 0.5310261 35 

2.019321 E−10 5.214782 
E−10 

0.4967294 40 

8.729451 E−10 3.458109 
E−10 

0.4683210 45 

6.402321 E−11 1.248273 
E−11 

0.4442883 50 

)7.2(.* AT
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Table 2. Numerical results of Example 2 in part I 


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hE S
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h N 

1.474380 E−3 5.940656 E−3 1.404963 5 

2.361536 E−4 2.918275 E−4 0.9934589 10 

1.257658 E−5 4.464388 E−5 0.8111557 15 

2.920628 E−6 8.225441 E−6 0.7024815 20 

7.152557 E−7 8.509960 E−7 0.6283185 25 

5.960464 E−8 4.807629 E−8 0.5735737 30 

3.135621 E−8 1.197832 E−8 0.5310261 35 

4.047211 E−9 6.601731 E−9 0.4967294 40 

2.942132 
E−10 

7.706242 
E−10 

0.4683210 45 

7.066213 
E−11 

3.416235 
E−11 

0.4442883 50 

 

Table 3. Numerical results of Example 1 in part II in 
case of shifted Chebyshev polynomial method for N = 5: 

Error x  

3.576279 E−7 0.1 

3.576279 E−7 0.2 

3.576279 E−7 0.3 

2.384186 E−7 0.4 

3.576279 E−7 0.5 

3.576279 E−7 0.6 

4.768372 E−7 0.7 

4.768372 E−7 0.8 

7.152557 E−7 0.9 

8.344650 E−7 1 

  

Table 4.Numerical results of Example 1 in part II in 
case of Sinc- collocation method 


)(

1
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  
h N 

1.914620 E−3 0.9934589 10 

2.176762 E−4 0.8111557 15 

3.68356 E−5 0.7024815 20 

7.748604 E−6 0.6283185 25 

4.649162 E−6 0.5735737 30 

9.536743 E−7 0.5310261 35 

5.960464 E−7 0.4967294 40 

4.053116 E−7 0.4683210 45 

9.536743 E−7 0.4442883 50 

 

 

 

 

 

Table 5. Numerical results of Example 2 in part II in case 
of shifted Chebyshev polynomial method for N = 5: 

Error x  

9.164214 E−7 0.0 

7.525086 E−7 0.1 

5.811453 E−7 0.2 

3.874302 E−7 0.3 

2.235174 E−7 0.4 

8.940697 E−8 0.5 

2.980232 E−8 0.6 

1.192093 E−7 0.7 

2.086163 E−7 0.8 

3.278255 E−7 0.9 

4.619360 E−7 1 

 

Table 6. Numerical results of Example 2 in part II in 
case of Sinc- collocation method 


)(

1
hE S

  h N 

7.003546 E−7 1.404963 5 

4.059984 E−9 0.9934589 10 

5.820766 E−10 0.8111557 15 

2.103206 E−12 0.7024815 20 

0.000000000000 0.6283185 25 

0.000000000000 0.5735737 30 

 

Table 7.Numerical results of Example 3 in part II in case of 
shifted Chebyshev polynomial method for N = 5: 

Error x  

1.490116 E−6 0.0 

3.099442 E−6 0.1 

2.175570 E−5 0.2 

1.013279 E−5 0.3 

1.642108 E−5 0.4 

2.914667 E−5 0.5 

1.484156 E−5 0.6 

1.299381 E−5 0.7 

2.312660 E−5 0.8 

7.152557 E−7 0.9 

3.099442 E−6 1 
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Table 8. Numerical results of Example 3 in part II in case 
of Sinc- collocation method 


)(

1
hE S

  
h N 

1.708865 E−4 1.404963 5 

3.409386 E−5 0.9934589 10 

1.549721 E−6 0.8111557 15 

7.152557 E−7 0.7024815 20 

5.960464 E−8 0.6283185 25 

5.960464 E−8 0.5735737 30 

0.000000000000 0.5310261 35 

 

Conclusion 
      In part I of this paper we study the numerical 
solution of example 1 and example 2 by Sinc- 
collocation method. But example 1 has been studied 
by Taylor-series expansion method in [6] and 
example 2 has been studied by using Block-Pulse 
functions in [8] by comparing the results we find that 
our method is better than the results of Maleknejad et 
al.,[6] and Maleknejad et al.[8]. In part II we study 
the numerical solution of three examples of linear 
Fredholm integral equations by using shifted 
Chebyshev polynomial method and Sinc- collocation 
method which derive a good approximation.  
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