Some approximation theorems via σ -convergence

Mustafa Obaid

Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80111, Jeddah 21589, Saudi Arabia.

Abstract: The concept of σ -convergence was introduced in [P. Schaefer, Proc. Amer. Math. Soc. 36(1972)104-110] by using invariant mean. In this paper we apply this method to prove some Korovkin type approximation theorems. [Mustafa Obaid. Some approximation theorems via σ -convergence. *Life Sci J* 2012;9(4):1527-1530] (ISSN:1097-8135). http://www.lifesciencesite.com. 231

Keywords and phrases: Invariant mean; σ -convergence; Korovkin type approximation theorem. AMS subject classification 2000: 41A10, 41A25, 41A36, 40A05, 40A3

1. Introduction and preliminaries

Let *c* and ℓ_{∞} denote the spaces of all convergent and bounded sequences, respectively, and note that $c \subset \ell_{\infty}$. In the theory of sequence spaces, a beautiful application of the well known Hahn-Banach Extension Theorem gave rise to the concept of the Banach limit. That is, the lim functional defined on *c* can be extended to the whole of ℓ_{∞} and this extended functional is known as the Banach limit [2]. In 1948, Lorentz [8] used this notion of a weak limit to define a new type of convergence, known as the almost convergence. Later on, Raimi [17] gave a slight generalization of almost convergence and named it the σ -convergence. Before proceeding further, we should recall some notations and basic definitions used in this paper.

Let σ be a mapping of the set of positive integers N into itself. A continuous linear functional φ defined on the space ℓ_{∞} of all bounded sequences is called an invariant mean (or a σ -mean; cf. [17]) if it is non-negative, normal and $\varphi(x) = \varphi((x_{\sigma(n)}))$.

A sequence $x = x_k$ is said to be σ -convergent to the number *L* if and only if all of its σ -means coincide with *L*, i.e. $\varphi(x) = L$ for all φ . A bounded sequence $x = x_k$ is σ -convergent (cf. [18]) to the number *L* if and only if $\lim_{p\to\infty} t_{pm} = L$ uniformly in *m*, where

$$t_{pm} = \frac{x_m + x_{\sigma(m)} + x_{\sigma^2(m)} + \dots + x_{\sigma^p(m)}}{p+1}$$

We denote the set of all σ -convergent sequences by V_{σ} and in this case we write $x_k \to L(V_{\sigma})$ and *L* is called the σ -limit of *x*. Note that a σ -mean extends the limit functional on *c* in the sense that $\varphi = \lim x$ for all $x \in c$ if and only if σ has no finite orbits (cf. [11, 12]) and $c \subset V_{\sigma} \subset \ell_{\infty}$.

If σ is a translation then the σ -mean is called a Banach limit and σ -convergence is reduced to the concept of almost convergence introduced by Lorentz [8].

For σ -convergence of double sequences, we refer the reader to [3, 12, 13, 14].

If m = 1 then we get (C, 1); convergence, and in this case we write $x_k \rightarrow \ell(C, 1)$; where $\ell = (C, 1)$ -lim x.

Remark 1.1. Note that:

(a) a convergent sequence is also σ -convergent;

(b) a σ -convergent sequence implies (C, 1) convergent.

Example 1.2. The sequence $z = (z_n)$ defined as

$$z_n = \begin{cases} 1 & \text{if } n \text{ is odd,} \\ 0 & \text{if } n \text{ is even} \end{cases}$$

is σ -convergent to $1/2(\text{for } \sigma(n) = n + 1)$ but not convergent.

Let C[a, b] be the space of all functions f continuous on [a, b]. We know that C[a, b] is a Banach space with norm $||f||_{\infty} \coloneqq \sup_{a \le x \le b} |f(x)|, f \in C[a, b]$. Suppose that $T_n: C[a, b] \to C[a, b]$. We write $T_n f(x)$ for $T_n(f(t), x)$ and we say that T is a positive operator if $T(f, x) \ge 0$ for all $f(x) \ge 0$.

The classical Korovkin approximation theorem states as follows [6, 7]:

Let T_n be a sequence of positive linear operators from C[a,b] into C[a,b] and $\lim_n ||T_n(f_i, x - f_i(x)||_{\infty} = 0$, for i = 0,1,2, where $f_0(x) = 1, f_1(x) = x$ and $f_2(x) = x^2$. Then $\lim_n ||T_n f(x) - f(x)||_{\infty} = 0$, for all $f \in C[a,b]$.

Quite recently, such type of approximation theorems for functions of single variables were proved in [5, 9, 10, 15, 16] and for functions of two variables in [1, 4] by using statistical convergence and almost convergence. In this paper, we use the notion of σ convergence to prove Korovkin type approximation theorems.

2. Korovkin type approximation theorem

The following is the V_{σ} -version of the classical Korovkin approximation theorem followed by an example to show its importance.\newline

Theorem 2.1. Let $(T)_k$ be a sequence of positive linear operators from C[a, b] into C[a, b] and $D_{n,p}(f, x) = \frac{1}{p} \sum_{k=}^{p=1} T_{\sigma^k(n)} f(x)$ satisfying the following conditions $\lim_{n \to \infty} \|D_{n,p}(1, x) - 1\|_{\infty}$

$$= 0 \quad \text{uniformly in } n, \quad (2.1.1)$$
$$\lim_{p \to \infty} \left\| D_{n,p}(t,x) - x \right\|_{\infty}$$

$$= 0 \quad \text{uniformly in } n, \quad (2.1.2)$$
$$\lim_{p \to \infty} \left\| D_{n,p}(t^2, x) - x^2 \right\|_{\infty}$$

= 0 uniformly in *n*, (2.1.3) Then for any function $f \in C[a, b]$ bounded on the whole real line, we have

$$\sigma - \lim_{k \to \infty} \|T_k(f, x) - f(x)\|_{\infty} = 0 \quad \text{i.e.,}$$
$$\lim_{p \to \infty} \|D_{n,p}(f, x) - f(x)\|_{\infty} = 0 \quad \text{uniformly in } n,$$

Proof. Since $f \in C[a, b]$ and f is bounded on the real line, we have $|f(x)| \le M, \quad -\infty < x < \infty.$

 $|f(x)| \le M$, Therefore,

 $|f(t) - f(x)| \le 2M, -\infty < t, x < \infty$ (2.1.4) Also we have that f is continuous on [a, b], i.e.,

 $|f(t) - f(x)| < c, \quad \forall |t - x| < \delta$ (2.1.5) Using (2.1.4), (2.1.5) and putting $\psi(t) = (t - x)^2$, we get

$$|f(t) - f(x)| < \epsilon + \frac{2M}{\delta^2} \psi, \forall |t - x| < \delta,$$

This means

$$-\epsilon - \frac{2M}{\delta^2}\psi < f(t) - f(x) < \epsilon + \frac{2M}{\delta^2}\psi$$

Now, we operating

 $T_{\sigma^k(n)}(1,x)$ for all *n* to this inequality since $T_{\sigma^k(n)}(f,x)$ is monotone and linear. Hence

$$T_{\sigma^{k}(n)}(1,x)\left(-\epsilon - \frac{2M}{\delta^{2}}\psi\right)$$

$$< T_{\sigma^{k}(n)}(1,x)\left(f(t) - f(x)\right)$$

$$< T_{\sigma^{k}(n)}(1,x)\left(\epsilon + \frac{2M}{\delta^{2}}\psi\right)$$

Note that x is fixed and so f(x) is constant number. Therefore

$$\begin{split} &-\epsilon T_{\sigma^{k}(n)}(1,x) - \frac{2M}{\delta^{2}}T_{\sigma^{k}(n)}(\psi,x) \\ &< T_{\sigma^{k}(n)}(f,x) - f(x)T_{\sigma^{k}(n)}(1,x) \\ &< \epsilon T_{\sigma^{k}(n)}(1,x) + \frac{2M}{\delta^{2}}T_{\sigma^{k}(n)}(\psi,x) \ (2.1.6) \end{split}$$

But

$$\begin{split} T_{\sigma^{k}(n)}(f,x) &- f(x) = T_{\sigma^{k}(n)}(f,x) \\ -f(x)T_{\sigma^{k}(n)}(1,x) &+ f(x)T_{\sigma^{k}(n)}(1,x) - f(x) \\ &= \left[T_{\sigma^{k}(n)}(f,x) - f(x)T_{\sigma^{k}(n)}(1,x)\right] \\ &+ f(x)\left[T_{\sigma^{k}(n)}(1,x) - 1\right] \quad (2.1.7) \end{split}$$

Using (2.1.6) and (2.1.7), we have

$$T_{\sigma^{k}(n)}(f, x) - f(x) < \epsilon T_{\sigma^{k}(n)}(1, x) + \frac{2M}{\delta^{2}}T_{\sigma^{k}(n)}(\psi, x) + f(x)(T_{\sigma^{k}(n)}(1, x) - 1)(2.1.8)$$
Let us estimate $T_{\sigma^{k}(n)}(\psi, x) = T_{\sigma^{k}(n)}((t - x)^{2}, x)$

$$= T_{\sigma^{k}(n)}(t^{2} - 2tx + x^{2}, x)$$

$$= T_{\sigma^{k}(n)}(t^{2}, x) + 2xT_{\sigma^{k}(n)}(t, x) + x^{2}T_{\sigma^{k}(n)}(1, x)$$

$$= [T_{\sigma^{k}(n)}(t^{2}, x) - x] - 2x[T_{\sigma^{k}(n)}(t, x) - x] + x^{2}[T_{\sigma^{k}(n)}(1, x) - 1].$$
Using (2.1.8), we obtain

$$T_{\sigma^{k}(n)}(f, x) - f(x) < \epsilon T_{\sigma^{k}(n)}(t, x) - x]$$

$$+ x^{2}[T_{\sigma^{k}(n)}(1, x) - 1] + \epsilon$$

$$+ \frac{2M}{\delta^{2}} \{ [T_{\sigma^{k}(n)}(t^{2}, x) - x^{2}] + 2x[T_{\sigma^{k}(n)}(t, x) - x] + r^{2}[T_{\sigma^{k}(n)}(1, x) - 1] + \epsilon$$

$$+ \frac{2M}{\delta^{2}} \{ [T_{\sigma^{k}(n)}(t^{2}, x) - x^{2}] + 2x[T_{\sigma^{k}(n)}(t, x) - x] + r^{2}[T_{\sigma^{k}(n)}(1, x) - 1] + \epsilon$$

$$+ \frac{2M}{\delta^{2}} \{ [T_{\sigma^{k}(n)}(t^{2}, x) - x^{2}] + 2x[T_{\sigma^{k}(n)}(t, x) - x] + r^{2}[T_{\sigma^{k}(n)}(1, x) - 1] + \epsilon$$

$$+ \frac{2M}{\delta^{2}} \{ [T_{\sigma^{k}(n)}(t^{2}, x) - x^{2}] + 2x[T_{\sigma^{k}(n)}(t, x) - x] + r^{2}[T_{\sigma^{k}(n)}(1, x) - 1] + \epsilon$$

$$+ \frac{2M}{\delta^{2}} \{ [T_{\sigma^{k}(n)}(t^{2}, x) - x^{2}] + 2x[T_{\sigma^{k}(n)}(t, x) - x] + r^{2}[T_{\sigma^{k}(n)}(1, x) - 1] \} + f(x)(T_{\sigma^{k}(n)}(1, x) - 1] \}$$

$$+ r^{2}(x)(T_{\sigma^{k}(n)}(1, x) - 1] \}$$
Since ϵ is arbitrary, we can write

$$T_{\sigma^{k}(n)}(f, x) - f(x)$$

$$f(x) - f(x) \le \epsilon [T_{\sigma^{k}(n)}(1, x) - 1] + \frac{2M}{\delta^{2}} \{ [T_{\sigma^{k}(n)}(t^{2}, x)x^{2}] + 2x [T_{\sigma^{k}(n)}(t, x) - x] + x^{2} [T_{\sigma^{k}(n)}(1, x) - 1] \} + f(x) (T_{\sigma^{k}(n)}(1, x) - 1).$$

Similarly

$$\begin{split} D_{n,p}(f,x) - f(x) &\leq \epsilon \big[D_{n,p}(1,x) - 1 \big] \\ &+ \frac{2M}{\delta^2} \{ \big[D_{n,p}(t^2,x) - x^2 \big] \\ &+ 2x \big[T_{\sigma^k(n)}(t,x) - x \big] \\ &+ x^2 \big[D_{n,p}(1,x) - 1 \big] \} \\ &+ f(x) \big(D_{n,p}(1,x) - x \big), \end{split}$$

and therefore

$$\begin{split} \left\| D_{n,p}(f,x) - f(x) \right\|_{\infty} &\leq \left(\epsilon + \frac{2Mb^2}{\delta^2} + M \right) \\ \left\| D_{n,p}(1,x) - 1 \right\|_{\infty} &+ \frac{4Mb}{\delta^2} \left\| D_{n,p}(t,x) - x \right\|_{\infty} \\ &+ \frac{2M}{\delta^2} \left\| D_{n,p}(t^2,x) - x^2 \right\|_{\infty}. \end{split}$$

Letting $p \to \infty$ and using (2.1.1), (2.1.2), (2.1.3), we get

 $\lim_{n \to \infty} \left\| D_{n,p}(f, x) - f(x) \right\|_{\infty} = 0 \text{ uniformly in } n$ This completes the proof of the theorem.

In the following we give an example of a sequence of positive linear operators satisfying the conditions of Theorem 2.1 but does not satisfy the conditions of the Korovkin theorem.

Example 2.2.. Consider the sequence of classical Bernstein polynomials

$$b_n(f,x) \coloneqq \sum_{k=0} f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k},$$
$$0 \le x \le 1.$$

Let the sequence (P_n) be defined by $P_n: C[0,1] \rightarrow$ C[0,1] with $P_n(f(x)) = (1 + z_n B_n(f, x))$, where z_n is defined as in Example 1.2. Then x x²

$$B_n(1,x) = 1, B_n(t,x) = x, B_n(t^2,x) = x^2 + \frac{x - x^2}{n},$$

and the sequence (P_n) satisfies the conditions (2.1.1)-(2.1.3). Hence we have

 σ -lim $||P_n(f, x) - f(x) - f(x)||_{\infty} = 0.$ On the other hand, we get $P_n(f, 0) = (1 + z_n)f(0)$, since $B_n(f, 0) = f(0)$, and hence

 $||P_n(f,x) - f(x)||_{\infty} \ge |P_n(f,0)| = z_n |f(0)|$ We see that (P_n) does not satisfy the classical Korovkin theorem, since $\limsup_{n\to\infty} z_n$ does not exists.

Now we present a slight general results.

Theorem 2.3. Let T_n be a sequence of positive linear operators on C[a, b] such that $\lim_{n} \|T_{n+1} - T_n\|_{\infty} = 0$

(2.3.1)

If

 $\sigma - \lim_n \|T_n(t^\nu - x) - x^\nu\|_\infty$

 $= 0 (\nu = 0, 1, 2).$ (2.3.2)Then for any function $f \in C[a, b]$ bounded on the real line, we have

$$\lim_{n \to \infty} \|T_n(f, x) - f(x)\|_{\infty} = 0 \qquad (2.3.3)$$

Proof. From Theorem 2.1, we have that if (2.3.2)holds then

$$\lim_{p} \|D_{n,p}(f,x) - f(x)\|_{\infty}$$

= 0, uniformly in *n* (2.3.4)
We have the following inequality

$$\|T_n(f,x) - f(x)\|_{\infty} \le \|D_{n,p}(f,x) - f(x)\|_{\infty} + \frac{1}{p} \sum_{k=n+1}^{n+p-1} \left(\sum_{l=n+1}^{k} \|T_l - T_{l-1}\|_{\infty} \right)$$

$$\leq \|D_{n,p}(f,x) - f(x)\|_{\infty} + \frac{p-1}{2} \{\sup_{k \ge n} \|T_k - T_{k-1}\|_{\infty} \}$$
(2.3.5)

Hence using (2.3.1) and (2.3.4), we get (2.3.3). This completes the proof of the theorem.

Remark 2.4. We know that σ -convergence implies (C, 1) convergence. This motivates us to further generalize our main result by weakening the hypothesis or to add some condition to get more general result.

Theorem 2.5. Let $(T_n$ be a sequence of positive linear operators on C[a, b] such that $(C,1) - \lim_{n \ge p} \|T_n(t^{\nu}, x) - x^{\nu}\|_{\infty}$

= 0 (v = 0.1.2)

(2.5.1)

and

$$\lim_{p} \left\{ \sup_{n \ge p} \frac{n}{p} \left\| \xi_{n+p-1}(f, x) - \xi_{n-1}(f, x) \right\|_{\infty} \right\} = 0 \quad (2.5.2)$$

where

$$\xi_n(f, x) = \frac{1}{n+1} \sum_{k=0}^n T_k(f, x).$$

Then for any function $f \in C[a, b]$ bounded on the real line, we have

$$\sigma \lim_{n \to \infty} \|T_n(f, x) - f(x)\|_{\infty} = 0,$$

Proof. For $n \ge p \ge 1$, it is easy to show that $D_{n,p}(f,x) = \xi_{n+p-1}(f,x)$

$$+\frac{n}{p}\Big(\xi_{n+p-1}(f,x)-\xi_{n-1}(f,x)\Big),\,$$

which implies sup

 $n \ge p$

$$\begin{aligned} \|D_{n,p}(f,x) - \xi_{n+p-1}(f,x)\|_{\infty} \\ &= \sup_{n \ge p} \frac{n}{p} \|\xi_{n+p-1}(f,x) \\ &- \xi_{n-1}(f,x))\|_{\infty} \end{aligned}$$
(2.5.3)

Also by Theorem 2.1, Condition (2.5.1) implies that $(C, 1) - \lim_{n \to \infty} ||T_n(f, x) - f(x)||_{\infty} = 0$ (2.5.4)

Using (2.5.1)-(2.5.4) and the fact that σ -convergence implies (C, 1) convergence, we get the desired result. This completes the proof of the theorem.

Theorem 2.6. Let $(T_n$ be a sequence of positive linear operators on C[a, b] such that

$$\lim_{n} \sup_{m} \frac{1}{n} \sum_{k=0}^{n-1} \left\| T_{n} - T_{\sigma^{k}(m)} \right\| = 0$$

If

$$\sigma - \lim_{n} ||T_n(t^{\nu}, x - x^{\nu})||_{\infty} = 0 \quad (\nu = 0, 1, 2) \quad (2.6.1)$$

Then for any function $f \in C[a, b]$ bounded on the real line, we have

Proof. From Theorem 2.1, we have that if (2.6.1) holds then

$$\sigma - \lim_{n} \|T_n(f, x) - f(x)\|_{\infty} = 0,$$

which is equivalent to

$$\lim_{n} \left\| \sup_{m} D_{m,n} = (f, x) - f(x) \right\|_{\infty} = 0$$

n - 1

Now

$$T_n - D_{m,n} = T_n - \frac{1}{n} \sum_{k=0}^{n-1} T_{\sigma^k(m)}$$
$$= \frac{1}{n} \sum_{k=0}^{n-1} (T_n - T_{\sigma^k(m)}).$$

Therefore

$$T_n - \sup_m D_{m,n} = \sup_m \frac{1}{n} \sum_{k=0}^{\infty} (T_n - T_{\sigma^k(m)})$$

Hence using the hypothesis we get

 $\lim_n \|T_n(f,x) - f(x)\|_\infty$

$$= \lim_{n} \left\| \sup_{m} D_{m,n}(f,x) - f(x) \right\|_{\infty}$$

= 0,

n-1

that is (2.6.2) holds.

References

- [1] G.A. Anastassiou, M. Mursaleen, S.A. Mohiuddine, Some approximation theorems for functions of two variables through almost convergence of double sequences, J. Comput. Analy. Appl. 13(1)(2011) 37-46.
- [2] S. Banach, Th\'{e}orie des Operations Lineaires, Warszawa, 1932.
- [3] C. Cakan, B. Altay, M. Mursaleen, □-convergence and \$\sigma\$-core of double sequences, Appl. Math. Lett. 19(2006)1122-1128.
- [4] F. Dirik, K. Demirci, Korovkin type approximation theorem for functions of two variables in statistical sense, Turk. J. Math. 33(2009)1-11.
- [5] O.H.H. Edely, S.A. Mohiuddine, A.K. Noman, Korovkin type approximation theorems obtained through generalized statistical convergence, Appl. Math. Letters 23(2010)1382-1387.
- [6] A.D. Gad\u{z}iev, The convergence problems for a sequence of positive linear operators on

unbounded sets, and theorems analogous to that of P.P.Korovkin, Soviet Math. Dokl. 15(1974)1433-1436.

- [7] P.P. Korovkin, PP: Linear Operators and Approximation Theory. Hindustan Publ. Co., Delhi, 1960.
- [8] G.G. Lorentz, A contribution to theory of divergent sequences, Acta Math. 80(1948)167-190.
- [9] S.A. Mohiuddine, An application of almost convergence in approximation theorems, Appl. Math. Letters 24 (2011) 1856-1860.
- [10] S.A. Mohiuddine, A. Alotaibi, M. Mursaleen, Statistical summability \$(C,1)\$ and a Korovkin type approximation theorem, J. Inequal. Appl. 2012 2012:172.
- [11] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford 34(1983)77-86.
- [12] M. Mursaleen, S.A. Mohiuddine, Double □-multiplicative matrices, J. Math. Anal. Appl. 327(2007)991-996.
- [13] M. Mursaleen, S.A. Mohiuddine, Regularly □-conservative and □-coercive four dimensional matrices, Comp. Math. Appl. 56(2008)1580-1586.
- [14] M. Mursaleen, S.A. Mohiuddine, On □ conservative and boundedly □ -conservative four dimensional matrices, Comput. Math. Appl 59(2010)880-885.
- [15] M. Mursaleen, A. Alotaibi, Statistical summability and approximation by de la Vallée-Poussin mean, Appl. Math. Letters 24(2011)320-324.
- [16] M. Mursaleen, V. Karakaya, M. Ert ü rk, F. G rsoy, Weighted statistical convergence and its application to Korovkin type approximation theorem, Appl. Math. Comput. 218 (2012) 9132-9137.
- [17] R.A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30(1963)81-94.
- [18] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36(1972)104-110.

9/22/2012