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1. Introduction and preliminaries 
   Let � and ℓ∞ denote the spaces of all convergent and 
bounded sequences, respectively, and note that  
� ⊂ ℓ∞. In the theory of sequence spaces, a beautiful 
application of the well known Hahn-Banach Extension 
Theorem gave rise to the concept of the Banach limit. 
That is, the lim functional defined on �  can be 
extended to the whole of ℓ∞  and this extended 
functional is known as the Banach limit [2]. In 1948, 
Lorentz [8] used this notion of a weak limit to define a 
new type of convergence, known as the almost 
convergence. Later on, Raimi [17] gave a slight 
generalization of almost convergence and named it the 
�-convergence. Before proceeding further, we should 
recall some notations and basic definitions used in this 
paper. 
   Let � be a mapping of the set of positive integers ℕ 
into itself. A continuous linear functional � defined on 
the space ℓ∞  of all bounded sequences is called an 
invariant mean (or a �-mean; cf. [17]) if it is non-

negative, normal and �(�) = � ����(�)��. 

   A sequence � = �� is said to be �-convergent to the 
number � if and only if all of its �-means coincide 
with �, i.e. �(�) = � for all �. A bounded sequence 
� = ��  is �-convergent (cf. [18]) to the number � if 
and only if lim�→∞ ��� = � uniformly in �, where 

��� =
�� + ��(�) + ���(�) + ⋯ + ��� (�)

� + 1
 

We denote the set of all �-convergent sequences by �� 
and in this case we write �� → �(��) and � is called 
the �-limit of �. Note that a �-mean extends the limit 
functional on �  in the sense that � = lim �  for all 
� ∈ � if and only if � has no finite orbits (cf. [11, 12]) 
and � ⊂ �� ⊂ ℓ∞. 
 
     If �  is a translation then the � -mean is called a 
Banach limit and � -convergence is reduced to the 
concept of almost convergence introduced by Lorentz 
[8]. 

   For � -convergence of double sequences, we refer 
the reader to [3, 12, 13, 14]. 
    If � = 1 then we get (�,1); convergence, and in 
this case we write �� → ℓ(�,1); where ℓ = (�,1)-
lim �. 
Remark 1.1. Note that: 
(a) a convergent sequence is also �-convergent; 
(b) a � -convergent sequence implies  (�,1) 
convergent. 
Example 1.2. The sequence � = (��) defined as 

�� = �1  if � is odd,
0 if  � is even

� 

is � -convergent to 1/2(for �(�) = � + 1)  but not 
convergent. 
    Let �[�,�]  be the space of all functions � 
continuous on [�,�]. We know that �[�,�] is a 
Banach space with norm 
||�||∞ ≔ sup

�����  
|�(�)|,���[�,�].  Suppose that 

��: �[�,�]→ �[�,�] . We write ���(�)  for 
��(�(�),�) and we say that � is a positive operator if 
 �(�,�) ≥ 0 for all �(�) ≥ 0. 
 
   The classical Korovkin approximation theorem 
states as follows [6, 7]: 
 
   Let ��  be a sequence of positive linear operators 
from �[�,�]  into �[�,�]  and lim�‖��(��,� −
��(�)‖

∞
=0, for � = 0,1,2, where ��(�) = 1,��(�) = � 

and ��(�) = ��. Then lim�‖���(�)− �(�)‖∞ = 0 , 
for all � ∈ �[�,�]. 
 
   Quite recently, such type of approximation theorems 
for functions of single variables were proved in [5, 9, 
10, 15, 16] and for functions of two variables in [1, 4] 
by using statistical convergence and almost 
convergence. In this paper, we use the notion of �-
convergence to prove Korovkin type approximation 
theorems. 
 
2. Korovkin type approximation theorem 
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   The following is the ��-version of the classical 
Korovkin approximation theorem followed by an 
example to show its importance.\newline 
 
Theorem 2.1. Let (�)�  be a sequence of positive linear 
operators from �[�,�] into �[�,�] and ��,�(�,�) =
�

�
∑ ���(�)�(�)

���
��  satisfying the following conditions 

lim
�→∞

���,�(1,�) − 1�
∞

   

= 0      uniformly in �,        (2.1.1) 

lim
�→∞

���,�(�,�) − ��
∞

   

= 0      uniformly in �,        (2.1.2) 

lim
�→∞

���,�(��,�) − ���
∞

   

= 0      uniformly in �,        (2.1.3) 
Then for any function �� �[�,�] bounded on the 
whole real line, we have 
 

�- lim
�→∞

‖��(�,�) − �(�)‖∞ = 0   i.e., 

lim
�→∞

���,�(�,�) − �(�)�
∞

   = 0      uniformly in �,        

 
Proof. Since �� �[�,�] and � is bounded on the real 
line, we have 

|�(�)|≤ � , −∞ < � < ∞. 
Therefore, 

  |�(�) − �(�)|≤ 2� ,−∞ < �,� < ∞     (2.1.4)        
Also we have that � is continuous on [�,�], 
i.e., 

|�(�)− �(�)|< �, ∀ |� − �|< �     (2.1.5) 
Using (2.1.4), (2.1.5) and putting �  (�) = (� − �)�, 
we get 

|�(�) − �(�)|< � +
2�

��
� ,∀|� − �|< �, 

This means 

−� −
2�

��
� < �(�)− �(�) < � +

2�

��
� . 

 
Now, we operating 
���(�)(1,�)  for all � to this inequality since 

���(�)(�,�) is monotone and linear. Hence 

���(�)(1,�)�−� −
2�

��
� �

< ���(�)(1,�)��(�)− �(�)�

< ���(�)(1,�)�� +
2�

��
� .� 

Note that � is fixed and so �(�) is constant number. 
Therefore 

−����(�)(1,�) −
2�

��
���(�)(� ,�) 

< ���(�)(�,�) − �(�)���(�)(1,�) 

< ����(�)(1,�) +
2�

��
���(�)(� ,�)  (2.1.6) 

But 

���(�)(�,�)− �(�) = ���(�)(�,�) 

−�(�)���(�)(1,�) + �(�)���(�)(1,�) − �(�) 

= ����(�)(�,�) − �(�)���(�)(1,�)� 

+�(�)����(�)(1,�)− 1 �            (2.1.7) 

 
Using (2.1.6) and (2.1.7), we have 

���(�)(�,�)− �(�) < ����(�)(1,�) 

+
��

�� ���(�)(� ,�) + �(�)(���(�)(1,�) − 1)(2.1.8) 

Let us estimate ���(�)(� ,�) 

���(�)(� ,�) = ���(�)((� − �)�,�) 

= ���(�)(�� − 2�� + ��,�) 

= ���(�)(��,�) + 2����(�)(�,�) + �����(�)(1,�) 

= [���(�)(��,�) − �]− 2�[���(�)(�,�) − �]

+ ������(�)(1,�)− 1�. 

Using (2.1.8), we obtain 
���(�)(�,�)− �(�) < ����(�)(1,�) 

+
2�

��
�����(�)(��,�) − ���� + 2�����(�)(�,�) − ��

+ ������(�)(1,�) − 1�}

+ �(�)����(�)(1,�) − 1�

= �����(�)(1,�) − 1�+ � 

+
2�

��
�����(�)(��,�) − ���+ 2�����(�)(�,�) − ��

+ ������(�)(1,�) − 1��

+ �(�)����(�)(1,�) − 1�. 

Since � is arbitrary, we can write 
���(�)(�,�) − �(�)

≤ �����(�)(1,�) − 1�

+
2�

��
�����(�)(��,�)���

+ 2�����(�)(�,�) − ��

+ ������(�)(1,�) − 1��

+ �(�)����(�)(1,�) − 1�. 

Similarly 
��,�(�,�) − �(�)

≤ ����,�(1,�) − 1�

+
2�

��
����,�(��,�)− ���

+ 2�����(�)(�,�) − ��

+ �����,�(1,�) − 1��

+ �(�)���,�(1,�) − ��, 
and therefore 

���,�(�,�) − �(�)�
∞

≤ �� +
2� ��

��
+ � � 

���,�(1,�) − 1�
∞

+ 
4��

��
���,�(�,�)− ��

∞
 

+
2�

��
���,�(��,�) − ���

∞
. 
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Letting � → ∞ and using (2.1.1), (2.1.2), (2.1.3), we 
get 

lim
�→∞

���,�(�,�) − �(�)�
∞

= 0  uniformly in � 

  This completes the proof of the theorem. 
 
    In the following we give an example of a sequence 
of positive linear operators satisfying the conditions of 
Theorem 2.1 but does not satisfy the conditions of the 
Korovkin theorem.  
Example 2.2.. Consider the sequence of classical 
Bernstein polynomials 

��(�,�) ≔ � � �
�

�
�

∞

���

�
�

�
� ��(1 − �)���,

0 ≤ � ≤ 1. 
      Let the sequence (��) be defined by ��: �[0,1]→
�[0,1]  with ��(�(,�) = (1 + ����(�,�), where �� is 
defined as in Example 1.2. Then 

��(1,�) = 1,��(�,�) = �,��(��,�) = �� +
� − ��

�
, 

and the sequence (��) satisfies the conditions (2.1.1)-
(2.1.3). Hence we have 

�-lim ‖��(�,�)− �(�) − �(�)‖∞ = 0. 
On the other hand, we get $��(�,0) = (1 + ��)�(0),   
since ��(�,0) = �(0), and hence 

‖��(�,�)− �(�)‖∞ ≥ |��(�,0)|= ��|�(0)| 
We see that (��) does not satisfy the classical 
Korovkin theorem, since lim sup�→∞ ��  does not 
exists. 
   Now we present a slight general results. 
 
Theorem 2.3. Let �� be a sequence of positive linear 
operators on �[�,�] such that 

lim
�

‖��� � − ��‖∞ = 0             (2.3.1) 

If 
�- lim

�
‖��(�� − �) − ��‖∞

= 0   (� = 0,1,2).           (2.3.2) 
Then for any function � ∈  �[�,�] bounded on the 
real line, we have 

lim
�

‖��(�,�) − �(�)‖∞ = 0        (2.3.3) 

Proof.  From Theorem 2.1, we have that if (2.3.2) 
holds then 

lim
�

���,�(�,�) − �(�)�
∞

= 0, uniformly in �     (2.3.4) 
  We have the following inequality 

‖��(�,�) − �(�)‖∞ ≤ ���,�(�,�) − �(�)�
∞

 

+
1

�
� � � ‖�� − ����‖∞

�

���� �

�

�� ���

���� �

 

≤ ���,�(�,�) − �(�)�
∞

+
� − 1

2
�sup

���

‖��

− ����‖∞�     (2.3.5) 

\ 
Hence using (2.3.1) and (2.3.4), we get (2.3.3). 
   This completes the proof of the theorem.  

 Remark 2.4. We know that �-convergence implies 
(�,1) convergence. This motivates us to further 
generalize our main result by weakening the 
hypothesis or to add some condition to get more 
general result. 
 
Theorem 2.5. Let (�� be a sequence of positive linear 
operators on �[�,�] such that 
(�,1) − lim

���
‖��(��,�) − ��‖∞

= 0  (� = 0,1,2)           (2.5.1)         
and 

lim
�

�sup
���

�

�
���� ���(�,�) − ����(�,�)�

∞
�

= 0   (2.5.2) 
where 

��(�,�) =
1

� + 1
� ��(�,�).

�

���

 

Then for any function � ∈  �[�,�] bounded on the 
real line, we have 

� lim
�→∞

‖��(�,�) − �(�)‖∞ = 0, 

Proof.  For � ≥  � ≥  1,  it is easy to show that 
�� ,�(�,�) = ��� ���(�,�)

+
�

�
���� ���(�,�) − ����(�,�)�, 

which implies 

sup
���

��� ,�(�,�) − ��� ���(�,�)�
∞

= sup
���

�

�
���� ���(�,�)

− ����(�,�))‖∞     (�.�.�) 

Also by Theorem 2.1, Condition (2.5.1) implies that 

(�,1)- lim�→∞‖��(�,�) − �(�)‖∞ = 0    (2.5.4)  
 
Using (2.5.1)-(2.5.4) and the fact that �-convergence 
implies (�,1) convergence, we get the desired result. 
     This completes the proof of the theorem. 
Theorem 2.6. Let (��  be a sequence of positive linear 
operators on �[�,�] such that 

lim
�

sup
�

1

�
� ��� − ���(�)�

���

���

= 0 

If 
�- lim

�
‖��(��,� − ��‖∞ = 0  (� = 0,1,2)  (2.6.1) 

Then for any function � ∈  �[�,�]  bounded on the 
real line, we have 
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lim
�

‖��(�,�) − �(�)‖∞ = 0.         (2.6.2) 

Proof. From Theorem 2.1, we have that if (2.6.1) 
holds then 

�- lim
�

‖��(�,�) − �(�)‖∞ = 0, 

which is equivalent to 

lim
�

�sup
�

��,� = (�,�) − �(�)�
∞

= 0 

Now 

�� − ��,� = �� −
1

�
� ���(�)

���

���

=
1

�
�(�� − ���(�)

���

���

). 

Therefore 

�� − sup
�

��,� = sup
�

1

�
���� − ���(�)�.

���

���

 

Hence using the hypothesis we get 
lim

�
‖��(�,�) − �(�)‖∞

= lim
�

�sup
�

��,�(�,�) − �(�)�
∞

= 0, 
that is (2.6.2) holds. 
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