Sensitivity analysis of Super-efficiency DEA Models for Iranian banks

Hadi Mohammadi Zarandini, Mohammad Reza Sheikhnabi
Enghelabe Islami Technical College, Technical and Vocational University, Yaftabad, Tehran, Iran
Hadi_mohammadi_zarandini@yahoo.com

Abstract

Banks as the economy monetary sectors and also due to the speed of the reflection of the policies of these sectors have an effective role for making economic steady growth in the whole society. Due to the variety of services, the assessment of bank units is complicated. The current assessment methods and the evaluation of bank units are empirical methods and since they are not standardized, their results in different banks are not comparable with each other. In addition, these methods do not consider the efficiency of the units and only consider the output of the units. The methodology of the data envelopment analysis (DEA) is a scientific and nonparametric approach for evaluating efficiency or none efficiency of decision making units (DMU) which has many scientific applications in banks, hospitals, power stations, insurance, and also universities. In this paper, variation of input and output of an efficient bank with considering its efficient is verified. In this regard, strong bank efficiency is defined and the sensitive variations in input and output of the bank are studied in contrast with efficient banks. [Hadi Mohammadi Zarandini, Mohammad Reza Sheikhnabi. Sensitivity analysis of Superefficiency DEA Models for Iranian banks. Life Sci J 2012;9(4):1519-1526] (ISSN:1097-8135). http://www.lifesciencesite.com. 230

KEYWORD: Data Envelopment Analysis, Super efficiency, Sensitive Analysis, Bank System.

1- Introduction:

One of the main issues of the economics which is in relation to the economic growth, price stability, and unemployment rate adjustment and obtain a main part of economic scientists attempt is to achieve efficiency and productivity. Achieving efficiency needs to consider optimum resources and factors of production. To consider the development of the world, particularly, and the rapid growth of the production, the revision and improvement of the methods for the optimum scarce resources such as raw materials, skilled labor, and time are the factors for units of enterprises to the whole economy of a country.

Banks as the administrators of economy monetary sectors with providing possible investment and making the capital for trade activities play an important role in the development of the economy of the country. Regarding the rapid reflection of the policies of this unit in the whole economy of the country, the control of its fulfillment can be significant. Without the assessment and improving the methods and avoid destroying the resources in banks, these institutes cannot be successful in fulfillment of their dynamic role in the economic development process. The available banks assessment and evaluation methods are frequently empirical and do not have any scientific background.

In this paper, in section 2, we study a method for the assessment of the banks fulfillment on the basis of DEA that has about two decade's antecedent. Then, in section 3 the sensitivity analysis of efficient units with
considering simultaneous variations in inputs and outputs with efficiency are discussed. At the end, in section 4 the mentioned methodology is used with real data of 113 branches of one bank in Tehran-Iran.

2- Data Envelopment Analysis

Data Envelopment Analysis (DEA) is a mathematical planning method for evaluating decision making units (DMU). This method has been found by Charnes, Cooper and Rhodes (CCR) in 1978[3]. They developed Farrell nonparametric method that has been designed for evaluating (DMU) with two inputs and one output. They added mathematical planning and removed some limitations which Farrell's method caused. Then, in 1984, Banker, Charnes, and Cooper (BCC)[2] considered very important concept of return to scale and developed the applied domain of DEA. In this way, DEA subject started and during the two last decades developed both in applying and theoretical point of view. Today, the managers use DEA as an effective tool for assessment of DMU revenue. DEA different models with input view and the output oriented model of DMU assess them. This systematic view occurred with the aid of DEA model that they, in turn, are basically the planning problem. Suppose that there are n DMU that $j^{\text {th }}$ unit of s dimensional outputs vector $y_{i j}$ produce component $x_{i j}$ from m dimensional input. The CCR and BCC models with input oriented are as follow, respectively:

The Input Oriented CCR

$$
\begin{aligned}
& \operatorname{Min} \theta-\varepsilon\left(1 s^{-}+1 s^{+}\right) \\
& \sum_{j=1}^{n} x_{j} \lambda_{j}+s^{-}=x_{r} \theta \\
& \sum_{j=1}^{n} y_{j} \lambda_{j}-s^{+}=y_{r} \\
& \lambda_{j} \geq 0, j=1,2, \ldots, n \\
& s^{+} \geq 0, s^{-} \geq 0
\end{aligned}
$$

In the above models, ε is a very small none Archimedean.s^{+}and s^{-}are s and m dimensional slack variables corresponding to output and input constraints, respectively. θ and λ_{i} are the other variables.
During the recent years, the issue of sensitivity and stability of data envelopment analysis (DEA) result has been extensively studied. Some studies, Ali and Seiford (1993) and Smith (1997), focus on the sensitivity of DEA results to the variable and model selection. Most of the DEA sensitivity analysis studies focus on the misspecification of efficiency classification of a test decision making unit. However, we shall note that DEA is an external method in the sense that all extreme points are characterized as efficient. If data entry errors occur for various DMUs, the resulting may vary substantially (see, e.g., Sexton et al., 1986). In the current proposal, as in many other DEA sensitivity studies, we say that the calculated frontiers of DEA models are stable if the frontier DMUs that determine the DEA frontier remain on the frontier after the particular data perturbations are made for all DMUs.

By updating the inverse of the basis matrix associated with a specific efficient DMU in a DEA linear programming problem, Charnes et al. (1995) study the sensitivity of DEA model to single output change. This is followed by a series of sensitivity analysis articles by Charnes and Neralic (1990)[5] in which sufficient conditions preserving efficiency are determined.

Another type of DEA sensitivity analysis is based on super-efficiency DEA approach in which a test DMU is not included in reference set (Andersen and Petersen, 1993; Seiford and Zhu, 1999[12]). Charnes et al. (1992), Rousseau and Semple (1995) and Charnes et al. (1996) develop a super-efficiency DEA sensitivity analysis technique for the situation where simultaneous proportional change is assumed in all inputs and outputs for a specific DMU under the

The Input Oriented BCC

$\operatorname{Min} \theta-\varepsilon\left(1 s^{-}+1 s^{+}\right)$
$\sum_{j=1}^{n} x_{j} \lambda_{j}+s^{-}=x_{r} \theta$
$\sum_{j=1}^{n} y_{j} \lambda_{j}-s^{+}=y_{r}$
$\lambda_{j} \geq 0, j=1,2, \ldots, n$
$\sum_{j=1}^{n} \lambda_{j}=1$
$s^{+} \geq 0, s^{-} \geq 0$
consideration. This data variation condition reduced by Zhu (1996), Seiford and Zhu (1998)[10],[11] to a situation where small inputs or outputs variations can be changed. In addition, this necessary condition for preserving the efficiency of the considered DMU was proved

The DEA sensitivity analysis methods are all developed for the situation where data variations are only applied to the test efficient DMU and the data for the remaining DMUs are assumed fixed. Obviously, this assumption may not be realistic, since possible data errors may occur in each DMU. Seiford and Zhu (1998) generalize the technique in Zhu (1996) and Seiford and Zhu (1998) to the worst-case scenario where the efficiency of the test DMU is deteriorating while the efficiencies of the other DMUs are improving. In their method, same maximum percentage data change of a test DMU and the remaining DMUs is assumed and sufficient conditions for preserving an extreme-efficient DMUs efficiency are determined. Note that Thompson et al. (1994) use the SCSC (strong complementary slackness condition) multipliers to analyze the stability of CCR model when the data for all efficient and all inefficient DMU are simultaneously changed in opposite directions and in same percentages. Although the data variation condition is more restrictive in Seiford and Zhu (1998) than that in Thompson et al. (1994), the superefficiency based approach may generate a larger stability than the SCSC method does. Also the SCSC method is dependent upon a particular SCSC solution, among other and, therefore, the resulting analysis may vary.

For the DEA sensitivity analysis based upon the inverse of basis matrix, is referred to Neralic (1994). It is well-known that certain super-efficiency DEA models may be infeasible for some extreme-efficient DMUs. Seiford and Zhu (1999) develop the necessary and sufficient conditions for infeasibility of various super-efficiency DEA models. Although the superefficiency DEA models employed in Charnes et al.
(1992) and Charnes et al. (1996) and did not encounter the infeasibility problem, the models used in Seiford and Zhu (1998a). Seiford and Zhu (1998a)[10] discovered the relationship between infeasibility and stability of efficiency classification. That is, infeasibility means that the CCR efficiency of the test DMU remains stable to data changes in the test DMU. Furthermore, Seiford and Zhu (1998b) [11]showed that this relationship is also true and the simultaneous data change case and other DEA models, such as BCC model of Banker et al. (1984) and additive model of Charnes et al. (1985b). This finding is critical since super-efficiency DEA models in Seiford and Zhu (1998b) are frequently infeasible for real-world data sets, indicating efficiency stability with respective to data variations in inputs/outputs associated with infeasibility. As a result, DEA sensitivity analysis can be easily applied if we employ various super-efficiency DEA models. By using
super-efficiency DEA models, the sensitivity analysis of DEA efficiency classification can be easily achieved. Since the approach uses optimal values to various super-efficiency DEA models, our approach provides "what-if" tool to the standard DEA analysis kit. We are able to know what may happen to DMUs efficiency, if data variation occurs in all DMUs as a result of new strategic planning. The new sensitivity analysis technique can well be applied to inefficient DMUs if we are interested in preserving the inefficiency of inefficient DMUs. (see Liang, L., Zha, Y., Cook, W.D. and Zhu, Joe, A. in press).

Suppose that there are n DMU such that $j^{\text {th }}$ unit of s dimensional outputs vector $y_{i j}$ produce component $x_{i j}$ from m dimensional input. The CCR and BCC models with input oriented as follows, respectively:

The Input Oriented BCC

$$
\begin{aligned}
& \operatorname{Min} \theta-\varepsilon\left(1 s^{-}+1 s^{+}\right) \\
& \sum_{j=1}^{n} x_{j} \lambda_{j}+s^{-}=x_{r} \theta \\
& \sum_{j=1}^{n} y_{j} \lambda_{j}-s^{+}=y_{r} \\
& \lambda_{j} \geq 0, j=1,2, \ldots, n \\
& \sum_{j=1}^{n} \lambda_{j}=1 \\
& s^{+} \geq 0, s^{-} \geq 0
\end{aligned}
$$

Where ε very small non-Archimedean is number, S^{+}and S^{-}are s dimensional slack variables corresponding to output and input constraints, respectively, θ and λ are the other variables. Suppose I is a set of inputs data that are variable and O is a set of outputs that are also variable. In this case, we have:

$$
D M U_{o}
$$

1 - Input Oriented Case

$$
\begin{aligned}
& \begin{cases}y_{r o}^{\wedge}=\tau y_{r o}, 0 \leq \tau \leq 1, & r \in O \\
y_{r o}^{\wedge}=y_{r o} & r \notin O\end{cases} \\
& \begin{cases}y_{r o}^{\wedge}=y_{r o}-(1-\tau) y_{r o}, & r \in O \\
y_{r o}^{\wedge}=y_{r o} & r \notin O\end{cases}
\end{aligned}
$$

2 - Output Oriented Case
$\begin{cases}x_{x o}^{\wedge}=\delta x_{i o}, \delta \geq 1, & i \in I \\ x_{x o}^{\wedge}=x_{i o} & i \notin I\end{cases}$
$\begin{cases}x_{i o}^{\wedge}=x_{i o}+(\delta-1) x_{i o}, & i \in I \\ x_{i o}^{\wedge}=x_{i o} & i \notin I\end{cases}$
$D M U_{J}, J \neq O$

1 - Input Variable Case
$\begin{cases}y_{r j}^{\wedge}=y_{r j} / \tau, 0 \prec \tau \leq 1, & r \in O \\ y_{r j}^{\wedge}=y_{r o} & r \notin O\end{cases}$
$\begin{cases}y_{r j}^{\wedge}=y_{r j}+\frac{1-\tau}{\tau} y_{r j}, & r \in O \\ y_{r j}^{\wedge}=y_{r j} & r \notin O\end{cases}$

2 - Output Variable Case
$\left\{\begin{array}{lr}x_{x j}^{\wedge}=x_{i j} / \delta, \delta \geq 1, & i \in I \\ x_{x j}^{\wedge}=x_{i j} & i \notin I\end{array}\right.$
$\begin{cases}x_{i j}^{\wedge}=x_{i j}-\frac{(1-\delta)}{\delta} x_{i j}, & i \in I \\ x_{i j}^{\wedge}=x_{i j} & i \notin I\end{cases}$

Now for these two cases we have:
Theorem 1: If $1 \leq \delta \leq \sqrt{\beta^{*}}$ then the DMU remain efficient, where $\sqrt{\beta^{*}}$ is an upper bound of variations of inputs and by the above modified the follow efficiency model is obtained:

$$
\begin{aligned}
& \beta^{*}=\operatorname{Min} \beta \\
& \sum_{\substack{j=1 \\
j \neq o}}^{n} x_{i j} \lambda_{j} \leq \beta x_{i o}, \quad i \in I \\
& \sum_{\substack{j=1 \\
j \neq o}}^{n} x_{i j} \lambda_{j} \leq x_{i o}, \quad i \notin I \\
& \sum_{\substack{j=1 \\
j \neq o}}^{n} y_{r i} \lambda_{j} \geq y_{r o}, \quad r=1,2, \ldots, s \\
& \beta \geq 0, \quad \lambda_{j} \geq 0
\end{aligned}
$$

Theorem 2: If $\sqrt{\alpha^{*}} \leq \tau \leq 1$, then the DMU remain efficient, where $\sqrt{\alpha^{*}}$ is a lower bound of variations of outputs, and by the above modified model follow efficiency models obtained as:

$$
\begin{array}{ll}
\alpha^{*}=\operatorname{Max} \alpha \\
\sum_{\substack{j=1 \\
j=0}}^{n} x_{i j} \lambda_{j} \leq x_{i o}, \quad i=1,2, \ldots, m \\
\sum_{\substack{j=1 \\
j \neq o}}^{n} y_{r j} \lambda_{j} \geq \alpha x_{r o}, \quad r \in O \\
\sum_{\substack{j=1 \\
j \neq o}}^{n} y_{r j} \lambda_{j} \geq y_{r o}, \quad r \notin O \\
\alpha \geq 0, \quad \lambda_{j} \geq 0 &
\end{array}
$$

Assessment of efficiency and the analysis of sensitive bank system

In this study 113 branches of an Iranian trading bank are considered. In the interior classification of the bank, the branches are consisted in a region in Tehran and, therefore, all the branches are selected from that region and they are compared in trading and economic positions. In the following, the inputs and outputs which have been employed with the help of bank specialists are introduced.

Introducing Inputs

The following inputs have been achieved on the basis of research and bank specialists (table 3):

1- The number of personnel of each unit with considering a particular weight for each of them:
1-1 Personnel with high education
1-2 Personnel with high experience
2- Regional position of the considered unit (branch) from the trade and economical view
3- Congestion of the branches of the other banks close to the under study unit
4- Infrastructure of the considered unit
5- Cost of the considered unit:
5-1 Personnel costs
5-2 Administrative costs
5-3 Operational costs

6- The number of computer terminals used in the considered unit

In this study, the selected inputs with considering limited information are as follows:

1- Personnel costs
2- Number of terminals
3- Rate of renting
The Personnel costs are the function of the number of staffs and a combination of branch staffs. For this reason, this input has been used in place of the number of staffs. The number of branch computer terminals is the second input that is used in the same way as received. The cost of renting is another input which is a function of regional trade position and infrastructure of the branch. Particularly, regional trade position has an effect on the rate of renting cost of branch. This input has been used as an indicator for comparing economical position of regions that the branches have been established there. Rent costs are considered up to date. Concerned information to input has been achieved from the related centers in bank and then without any changes has been used.

Introducing Outputs

Considering the main duties of the trade banks, branch outputs are studied in the following 3 sections:

1- Outputs concerned to the branch activities in the equipment of sources section
2- Outputs concerned to the branch activities in the allocation of sources section Outputs concerned to the branch activities in the services section.
Finally, regarding informational limitations and the bank specialists' point of view, the following outputs are considered (table 6);

1- Sources

2- Consumptions
3- Services
4- Account numbers

Considering Computing results and Conclusion

In this section the results are discussed. In order to solve linear programming, the GAMS software is used. According to the results, the following branches of banks in the sample obtained efficient (Table4).The branches are numbers $7,8,21$, $22,25,26,29,32,34,37,41,49,50,57,62,71,78$, $80,83,84,85,92,111,112$, and 113 . These make assessment standard of efficient frontier for the other branches. Different combinations of efficiency branches provide possibility for the presentation revenue improvement approaches of inefficiency branches. Beside efficiency result of the models with input oriented, the effectiveness references presentation and the concerned computational provide revenue improvement possibility approaches in such a way that it can be reduced of the inefficiency branches so as to approach to frontier. As an example, the branch 1 with 95 percent of efficiency is inefficient and its assessment references are the branches 26, 29, 62 and 85 with corresponding weight $.586, .235, .160$ and .018 , respectively.
Revenue improvement approaches with input oriented

For considering branches operating situation with the rate of efficiency and their references, the revenue improvement approaches with input oriented are computed and also presented. Table 1 shows the operating situation of the branch of 64. Particularly with allocating the corresponding weights to reference branches, the assessment reference branches show that they correspond with a point on efficient frontier.

Table (1): the revenue of branch number 64

Branch 64 Efficiency rate \%86	inputs			Outputs			
Branch current situation	25000000	12	17675020	2836	6737	253183	19190151
References weights							
37 . 361	1000000	6	9580191	1077	5822	1359328	13855106
84 . 639	7000000	11	18276182	3798	11862	6024026	29902424
Branch desirable situation	8083000	9.1	15136929	2816	9681	4340070	24109342
Reducing inputs so as to	16917000	2.8	2538091				
Transform the current situation To desirable one							

In fact, the desired situation suggests the best one for the branch. It produces the current outputs with unknown rate. In order to revenue improvement, the branch number 64 reduction rate of inputs is recommended.

We embark to improve the revenue with input oriented and the branches are leads to frontiers reality that has been described by them. The following are the results:

Table (2): summery result

Inputs Situation	current situation	desired	
Branches personality cost		804698493	
Branches computer terminal	360		711433241
Branches rental costs	276936516	291	40030000

With this improvement we should obtain the current available outputs with reduction $\% 11.59$ in branches personnel costs and $\% 10.16$ in branches computer terminal and $\% 30.81$ in branches rental structural costs. In table 4 the efficiency is presented with using BCC model. In this table, the efficiency of DMUs and their indicator units are specified. As an example, the DMU number 14 has 70% efficiency and its indicator units are the DMU numbers $32,34,62$, 83, and 85. Obviously, this says the linear combination of the indicator units where all of them are effective. There are at most 70% inputs of the DMU and number 14 produce at least the same outputs. The coefficient of this linear combination is the same value λ that obtained from solving the model. The coefficient λ for the DMU numbers $32,34,62,83$, and 85 are $.148, .117, .156, .455$, and .123 , respectively. As an example, the unit 14 has personnel cost 8864374 Rials (Iranian money unit), whereas the linear combination of the personnel cost of the indicator units of number 14 with cited coefficient is 735200 Rials. It shows that this unit is effective and the money saving in the personnel cost will be 1512373 Rials. In summary, if all inefficient units with the reduction of their inputs get efficiency and the corresponding outputs have no any changes, then the monthly money saving in personnel cost will be 93265252 Rials. That is, there is a possibility that
the reduction of about $\% 19$ is due to the reduction in personnel cost by reducing the number of personnel. In addition, there are 69 computer terminals out of total number of 360 . Also, there is possible reduction in rate rental units, as we said before, the upper bounds $g_{o}(\delta-1)$ and $g\left(=\frac{\delta-1}{\delta}\right)$ for the input variations and $h_{o}(=1-\tau), \quad h\left(=\frac{1-\tau}{\tau}\right)$ for the outputs are obtained, where the upper bounds g_{o} and g_{1} with considering theorem and the upper bounds h_{o} and h_{1} by using theorem will be computed. There are three inputs and four outputs for the 113 bank units. Therefore, there are 20 cases for the only variations and the only output variations and the simultaneous inputs and outputs variation. For example, we consider variations in three inputs and four outputs, simultaneously. Table 5 is an example. It shows:
$\left(g_{o}, g\right)=(\% 31.114, \% 32.75),\left(h_{o} h\right)=(\% 47.08, \% 88.98)$.
That is, three inputs of the DMU 34 can simultaneously be increased as $\% 23.75$. Also four outputs of DMU 34 can be decreased as $\% 47.08$ and four outputs of the other units can be increased \%88.98; while, unit 34 remained efficient.

Table (3): trade banks input

DMU	P.C	T.N	N R.R	DMU	P.C	T.N	.N R.R	DMU	P.C	T.N R.R	DMU	P.C	T.	.N R.R
1	1048247	43	3500000	29	5059262	3	1000000	57	4833471	33000000	85	16488749	5	1500000
2	11091919		1500000	30	6538932	4	4000000	58	5675406	56000000	86	543265		5000000
3	6006368		9000000	31	7743787	4	4500000	59	6845551	44000000	87	5677375		1000000
4	4983049		10000000	32	4728702	6	6500000	60	4648552	59000000	88	6041356	5	1000000
5	595421	4	3000000	33	5710969	4	3600000	61	8067707	53000000	89	13551643	7	1000000
6	12361292		12000000	34	5376670	6	8000000	62	6897099	42500000	90	7201054	8	5000000
7	5667654		7000000	35	5853293	4	5000000	63	5104826	46000000	91	5920688		500000
8	4576087		5000000	36	5413185	4	1000000	64	17675020	1225000000	92	19213993		13000000
9	8758295		1200000	37	9580191	4	8000000	65	4643428	48000000	93	5324270		43000000
10	6556536		7000000	38	15788314	7	4000000	66	7069601	48000000	94	10724288		5000000
11	4247944		2000000	39	4319690	5	2500000	67	7798662	55000000	95	8682941		68000000
12	9186560		5000000	40	9169764	7	6000000	68	24765351	115000000	96	5754220		43500000
13	14483093		3500000	41	4271776	3	5000000	69	7513519	68000000	97	7458563		55000000
14	8864374	6	7000000	42	8248442	4	7000000	70	8352050	66000000	98	6368766		41000000
15	4509167	5	3500000	43	6898955	5	6000000	71	6631905	38000000	99	6313385		57000000
16	5843595	4	45000000	44	6389470	4	2500000	72	5864453	55000000	100	4142405		41500000
17	6811667		6000000	45	7733840	4	5600000	73	4075674	43000000	101	5567881		43000000
18	5166614		1800000	46	5178158	5	6000000	74	5587501	51500000	102	4635193		43000000
19	5696379	4	2500000	47	8411440	4	5000000	75	8538411	46000000	103	4521143		46000000
20	8663787	5	1000000	48	6951224	4	4000000	76	10649418	810000000	104	7483051		510000000
21	6187368	4	1500000	49	3350041	3	2000000	77	8548086	44000000	105	8144612		67000000
22	4795112	3	5000000	50	13232901	8	4500000	78	5483076	3600000	106	4410235		45000000
23	5856757	5	2000000	51	4456491	4	3000000	79	6968171	55000000	107	4422029		54000000
24	4950695	6	3500000	52	6291246	4	1500000	80	2846195	41700000	108	8577974		41200000
25	5223122	3	1000000	53	5424185	5	1500000	81	6662196	510000000	109	5468282		41000000
26	6491851	4	80000	54	6094183	5	9000000	82	6830834	61000000	110	5764381		52000000
27	4611285		800000	55	5175868	5	3000000	83	3875326	31500000	111	2692566		31500000
28	4736197	4	5000000	56	8487390	5	4000000	84	18276182	2170000	112	4892159		33000000
											113	1868551		68000000

Table (4): Branches efficiency assessment with using BBC model

Table (5):sensitive analytical results regarding to three inputs and four outputs

$\begin{gathered} \text { Effi. } \\ \text { DMU } \end{gathered}$	$\begin{aligned} & \text { In.inpout } \\ & D M U_{0} \end{aligned}$	$\begin{aligned} & \text { De.input } \\ & D M U_{J} \end{aligned}$	$\begin{aligned} & \text { De.output } \\ & D M U{ }_{0} \end{aligned}$	In.output $D M U_{J}$
26	infeasible			
32	\%3.44	\%3.32	\%14.24	\%16.60
34	\%31.14	\%23.75	\%47.07	\%88.98
37	infeasible			
62	infeasible			
84	\%11.35	\%10.19	\%12.82	\%14.70
85	Without any change			
92	infeasible			

Table (6): Outputs of 113 trade bank

DMU SOU	COM	S.N A.N									
18072802	1137288	35531027	293369191	73004	2572745	571537353	547768	13861661	851207845	30613605	518161377
23796848	8802238	17711111	302810359	441499	18871267	584507971	551102	2238762	862805270	108529	1718986
34388834	328775	36503473	313832076	1120866	35761112	593886103	741356	3249919	871997840	293928	2070926
43275816	723422	28731237	326183678	1299979	25532163	602255696	134776	15691044	8848565781	1160545	33061292
52144232	130902	14971043	333029892	340393	20681003	613792390	2779127	23421085	8912465404	906861	45852160
6558342	1669955	46852848	346742874	428067	126801458	6210235516	178267	2249983	9059570865	597212	41021370
72379602	978280	15691666	353850715	227202	21731001	631327064	127459	1976861	912924174	134378	2163648
81847615	369477	1341762	362814899	841857	1363669	6419190101	2531283	67372836	9214981686	4351541	1547551888
93866057	1132261	29071372	37138551061	1359328	58221071	652901544	195778	844512	933972444	448796	19641104
102629585	737234	2660881	3825500395	58219533	58221365	666149032	566435	18631917	9412923013	1140798	26231683
111364925	158713	793707	392481749	217056	15421055	675454577	1139455	37681027	957802798	1495416	37821064
123085390	899475	18281438	406353515	3229342	47451215	6818779101	13973829	29 60742483	962756073	241804	18451046
135944605	20520010	102161944	412404629	326794	1163739	696470746	230553	32201296	975585589	498031	32781285
145509590	7677767	2718452	423922389	2641086	27782003	706470746	230553	32201643	9822791055	500717	3247895
152761161	5721165	22391074	435363843	4651810	32061106	712131713	481673	2043762	993460702	648227	3020922
163482386	2739362	2056933	444939518	1038649	3753903	722772727	184187	1606773	1002114675	567999	1266761
173137177	578727	1783841	452856027	1947496	1445894	731578610	287373	22113557	1013413493	211528	19321083
182979151	277762	1681995	463361165	7527834	36321013	743061077	291655	1981885	1022528746	41547	1167675
191642125	257041	1211666	472767980	128683	2138701	753373373	185792	2663792	1033476094	205468	2098813
204858125	764296	34751557	482282079	254094	2253816	766827827	1402650	31472063	1046239642	933676	34451271
212636044	4588414	1777706	491087799	165857	723483	774633627	293017	21741089	1057836688	300411	37211641
222449765	318999	1601918	5016553107	1544788	8080381181	781647497	241576	1561659	1062090219	78817	1424733
232606134	456496	24751163	513097595	71839	18931027	795400530	135597	24711327	1073302432	417763	1665980
242832667	230500	15221245	523026974	485292	18371111	80990122	49881	897750	1083244055	1640191	4021881
254144835	53852	896578	532904981	1123450	19493473	814963290	612598	3394899	1092732872	373473	1996890
265707467	7861	45491240	542801642	356528	11521237	823643806	537143	20331280	1103361719	1517184	2100707
271931856	1563951	1121680	552372087	74417	17611043	831913860	100350	1550832	111582473	21207	270348
283148362	3475681	17071092	563494077	3153101	20762848	8429902424	6024026	6118623798	$\begin{aligned} & 11223672613 \\ & 113162874 \end{aligned}$	$\begin{gathered} 3232131 \\ 232131 \end{gathered}$	$\begin{gathered} 792 \quad 334 \\ 435 \quad 42 \end{gathered}$

Reference

1. Mohammadi, H. (1999). Sensitive analysis and power of efficient units in data envelopment analysis. MSc Desertation, Amirkabir University of Technology. Tehran-Iran.
2. Banker, R.D.,A,. Charns and W.W.Cooper, "some models for estimating technical and scale inefficiencies in Data envelopment analysis," Management Science 30,1078-1092, 1984
3. Charnes, A, W.W. Cooper and E. Rhodes, "measuring the efficiency of decision making units," European J. of Oper. (1978) 429-444.
4. Farrell,M., " The measuring of productivity efficiency," Journal of Statistical Society, Series A(General), Vol. 120(1957), pp.253-281
5. Charnes, A, and L.Neralic, "sensitivity analysis of the additive model in data envelopment analysis", European J. of Operational Research 48 (1990), 332-341.
6. Cooper, W.W., Li, S., Seiford, L.M., Thrall, R.M. and Zhu, Joe, Sensitivity and stability analysis in DEA: some recent developments, Journal of Productivity Analysis, Vol. 15, (2001), 217-246.
7. Cooper, W.W., Li, Shanling, Seiford, L.M. and Zhu, Joe, Sensitivity Analysis in DEA, in Handbook on Data Envelopment Analysis, eds W.W. Cooper, L.M. Seiford and J. Zhu, Chapter 3, 75-97, Kluwer Academic Publishers, Boston. 2004.
8. Cook, W.D. and Zhu, Joe, Rank order data in DEA: A general framework, European Journal of Operational Research, Vol. 174, Issue 2 (2006), 1021-1038.
9. Huang, Z.M., Li, S.X. and Zhu, Joe, A Special Issue on "Data Envelopment Analysis: Theories and Applications" in honor of William W. Cooper, International Journal of Information Technology and Decision Making, Vol. 4, No. 3 (2005), 311-316
10. Seiford, Lawrence M. and joe Zhu, " Stability regions for maintaining efficiency in data envelopment analysis", European J. of Operational Research Vol. 108, No. 1, (1998a), 127-139.
11. Seiford , Lawrence M. and joe Zhu, " Sensitivity analysis of DEA models for simultaneous change in all the data,", Journal of the Operational Society, Vol. 49, (1998b), 1060-1071.
12. Seiford, Lawrence M. and joe Zhu, " Infeasibility of super-efficiency data envelopment analysis models", INFOR, Vol. 37, No.2, (1999), 174-187.
13. Zhu.J. "Super-efficiency and DEA sensitivity analysis.", European J. of Operational Research, Vol. 129 (2001), pp 443-455.
14. Liang, L., Zha, Y., Cook, W.D. and Zhu, Joe, A Modified Super-efficiency DEA Model for Infeasibility, Journal of Operational Research Society 60, 276-281(February 2009).
