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Abstract: Nonnegative Matrix Factorization (NMF) based methods have found use in the context of blind source 
separation, semi-supervised, and unsupervised learning. These techniques require the use of a suitable cost function 
to determine the optimal factorization, and most work has focused on the use of least square formulation which is 

prone to large noise and outliers. In this paper we developed robust NMF algorithm using 1R -norm which exhibit 

stability and robustness w.r.t. large noises. This algorithm is as efficient as the algorithms for least square 

formulations, avoiding the significant computational complexities routinely associated with 1R -norm formulations. 

The experimental show that 1R -NMF can effectively separate the observed that contain outliers better than standard 

NMF.  
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1. Introduction 

 During the past decades, blind source separation 
(BSS) has become a hot topic in the neural network 
community ( Hyvarinen,1999), signal processing 
community (Cichocki ,2006), etc. The aim of BSS is to 
recover the latent sources, without knowing the exact 
mixing channel. As BSS method needs only the 
observations, it is quite attractive for signal recovery 
and system identification. The technology of BSS has 
many underlying applications, such as signal 
encryption (Chen,2008), micro-array data analysis 
(Stadlthanner ,2007), and so on. 

On the other hand, many real sources are 
nonnegative, such as the natural images 
(Guillamet,2003, Berry,2007, Spratling ,2006) and the 
microarray data (Stadlthanner,2007) )and data analysis, 
e.g., text analysis (Dhillon ,2007), Brunet,2000) Also, 
in BSS-based signal cryptosystem, to obtain better 
decryption accuracy, the plaintext signals are often 
preprocessed to be nonnegative before encryption 
(Chen ,2008). Therefore, in these cases, BSS may be 
solved by the widely used nonnegative matrix 
factorization (NMF) scheme, which is a powerful tool 
for data representation. The aim of NMF is to 
decompose a given dataset (observations) into a mixing 
matrix and a feature dataset (sources), which are both 
nonnegative. 

 Generally speaking, NMF does not rely on the 
statistical features of the sources, such as 
independence, nonstationarity, etc. But to solve BSS 
by NMF practically, it often requires some constraints 
to conquer the non-uniqueness of the factorization 
(Amari,2006, Shahnaz,2006). In fact, the constraints 
are widely discussed in different applications of NMF, 

where the volume constraint shows great potential to 
generate a unique result. 

The rest of this paper is organized as follow. 
Section 2, describes the basic BSS and NMF model. 

Section 3, presents the rotational invariant 1l - norm , 

section 4, illustrated the 1R -NMF algorithm that used 

to separation , section 5, the performance measures that 
used, section 6 , the experimental results and discusses 
the points of our method compared to the standard 
NMF. Finally, section 7 concludes the paper. 
2. BSS AND NMF 
The simplest linear model of BSS is: 

VAXY                                           (1)  

 Where TI
ity  RY ][ is a matrix of observations, 

JI
ija  RA ][ is an unknown mixing matrix, 

TJ
jtx  RX ][ is a matrix of unknown hidden 

components or sources, and TIRV is a matrix of 

additive noise. The objective is to estimate A and X  

rely only on the observed Y . Practical BSS algorithms 
often need some prior knowledge and assumptions 
about the sources, such as independence (Hyvarinen, 
1999). 

When Y , X , and A  are nonnegative, then 
Eq.(1) is a typical perfect NMF model . Therefore, 
NMF algorithms can be used to solve BSS (Hyvarinen 
1999). Although there is the scaling indeterminacy of 
columns of A  in NMF/BSS, it does not affect the 
results essentially (Cichocki,2006). Thus, the columns 

of A  can be assumed to have unit length. This 
problem can be solved by choice a suitable cost 
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function and perform alternating minimization similar 
to Expectation Maximization (EM) approach 
(Cichocki,2006). 

There are many possibilities for defining the 
cost function D(Y ||AX), and many procedures for 
performing its alternating minimization, which lead to 
several kinds NMF algorithms as: multiplicative, 
projected gradient, and fixed point (Seung,1999, 
Cichocki,2006,and Dhillon,2005). 

The most widely known adaptive 
multiplicative algorithm for NMF is based on the 
squared Euclidean distance (expressed as the squared 
Frobenius norm) that defines as:   
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Using a gradient descent approach for cost 
function Eq. (2) and switching alternatively between 
the two sets of parameters; we obtain the simple 
multiplicative update formulas: 
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The above algorithm Eq. (3)- Eq. (4), called 
often the Lee-Seung NMF algorithm (Lee,2001) in 
which this algorithm is sensitive to the presence of 
outliers and to avoiding this we will used Rotational 

1l - norm ( 1R -norm) as illustrated in the following 

section. 

3. Rotational 1l - norm  

The 1R -norm of a matrix was first introduced 

in (Ding, 2006) as rotational invariant 1l - norm and 

also used for multi-task learning (Argyriou,2007, 
Obozinski, 2006) and tensor factorization (Huang, 
2008). It is defined as: 
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While the Frobenius and 1l -norms are defined as: 
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In the Euclidean space, the Frobenius norm 
has a fundamental property rotational invariance. In 

comparison, the 1R norm has the following properties: 

(1) triangle inequality; (2) rotational invariance, as 
emphasized in (Ding ,2006). Clearly, the Frobenius 
norm is determined by the sum of the squared 
elements. In this case, the squared large elements 
dominate the sum. Consequently, the Frobenius norm 

is sensitive to outliers. In comparison, the 1R norm is 

determined by the sum of elements without being 

squared. Thus, the 1R norm is less sensitive to outliers 

than the Frobenius norm (Ding, 2006). Note that 1R -

norm is different from 1l sparsification: in 

sparsification 1l  is a constraint to the objective 

function while in 1R  is on the main objective 

function itself (also we used it as constraint to the 
objective function). 

The problem can be solved using a simple yet 

efficient algorithm called 1R -NMF ( 1R -norm, 

Nonnegative Matrix Factorization). 

4. An Efficient Algorithm 1R -NMF 

The problem in Eq. (1) can solved by consider the 
following objective function 

111
||||||||||||)||(D

RRR
AXAXYAXY  
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(7) 

In order to impose sparsity, we add 
1

||||
R

X and 

1
||||

R
A where ]05.0,01.0[,   are non- 

negative regularization parameters (Phan, 2009). 
By using a gradient descent approach for cost 

function Eq. (7) we obtain the simple multiplicative 
update formulas: 
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Where C  is a diagonal matrix with the i-th diagonal 
element as: 

||x||2
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By left multiplying the two sides of Eq. (9) by 
1-AC  

then we obtain: 

YAACΛ 1T1 )(2                                     (11) 

By substitute Eq. (11) into Eq. (9) then: 

YAACACX 1T1T1 )(                            (12) 

The above update rules can be derived by using general 
multiplicative heuristic formulas as:  
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Where   is hadamard (component-wise) product and 
  is over-relaxation positive parameter [0.5,2] which 
used to accelerate the convergence ( Cichocki,2006) 

.By the same rule we can define the update for A  as 
follow: 
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For NMF problem with sparsity constraints the 
above multiplicative algorithm Eq. (13)- Eq. (14) can 
be summarized in the following pseudo-code 

Algorithm 1R -NMF. 

 Furthermore, it would be very interesting to apply 

1R -NMF algorithm for inverse problems in which 

matrix A  is known and we need to estimate only 

matrix X  for ill-conditioned and noisy data. 
5. Performance Evaluation  
         In order to evaluate the performance and 

precision of 1R -NMF algorithm we used two criteria 

(Phan, 2009): 
1. Signal -to-Interference-Ratio (SIR). 

    Is used to evaluate the ratio between the 
power of the true signal and the power of the 
estimated signal 
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2. Peak Signal-to-Noise-ratio (PSNR). 
         In contrast to SIR, the PSNR estimates the ratio 
between a maximum possible value of the normalized 
signal and its root mean squared error, that is: 
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Where R  is a maximum value of the signal and T  
is the number of samples.  
6. Simulations and Experimental Results: 

  We have conducted extensive simulations with 
experiments designed specifically to address, how 

robust is the 1R -NMF algorithm to noisy mixtures 

under multiplicative Gaussian noise, additive Gaussian 

noise. The multiplicative 1R -NMF algorithm and 

standard NMF algorithm have been extensive tested on 
many difficult benchmarks. Illustrative examples are 
provided to give insight into the multi-layer techniques 
(Phan, 2009). 

a. Example 1 
In this example the simulations were performed 

on the “X_5smooth” dataset (Phan,2009)which contain 
three sparse and smooth nonnegative signals .We 
considered the matrix X  with three nonnegative 
sources (truncating their length to the first 1000 
samples) shown in Fig.1. We mixed these sources with 

a random mixing matrix A of dimension 33 , whose 
elements were drawn independently from a uniform 
random distribution in the unit interval as displayed in 
Fig. 1. 

After using 1R -NMF to separate the mixture 

signals, the result of estimated signals shown in Fig. 2 
and the result of standard NMF in Fig. 3. The 
performance was evaluated with SIR is 36.1622dB and 

23.5268dB for 1R -NMF and standard NMF 

respectively. 
b. Example 2 

In this example we applied our 1R -NMF 

algorithm on a datasets (Phan,2009) (such as 
"Speech4", "SP_Ex1_Signals"," Speech8" and 
"X_10rand_sparse"). In which we take three sources 
from each dataset and we mix these sources with 
random mixture matrix with noise (5dB), the 
performance of our algorithm shown in Fig. 4, Fig. 
5and Fig. 6 and Table 1. 

Where in Fig. 5 the estimated speech (from 

"Speech4" dataset ) by 1R -NMF and its original in 

which there are scaling and permutation in the 
estimated speech, but this Figure cannot tell us the 
performance of our algorithm so, we can illustrated this 
performance through using Hinton histogram in which 
it used to compute and visualize the correlation matrix 

G of two matrices X and X̂ , for evaluating the 
performance of uncorrelated sources (Phan,2009) (if 

the sources are estimated perfect then G become 
diagonal matrix ).From Fig. 6 we can see that our 
algorithm is better than standard NMF. 

 
       Table 1 illustrated the performance of our 
algorithm in which SIR and PSNR is better than 
standard NMF but it take long time than standard 
NMF. 

Algorithm 1R -NMF 

 Input : 
TI

RY :input data, J :rank of approximation, 

                :over-relaxation, and  ,  sparsity degrees 

  Output: 
JI

RA and 
TJ

RX such that cost 

function (7) is minimized. 
1. begin  

2.        initialization for A  and X 
3.          repeat                                             /* update X 

and A */ 

4.             update X  by (13) 

5.             update A  by (14) 

6.               foreach ja  of A  do  

pjajaja ||||/   /* normalize to ℓ p unit 

length */ 
7.        until  a stopping criterion is met   /* convergence 

condition */ 
8. End 
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Fig 1: illustration of simulation experiments with 
three nonnegative sources and their typical mixtures 
using a randomly generated (uniformly distributed) 
mixing matrix (a, b, c) sources (nonnegative 
components) and (d, e, f) mixtures Signals. 

 
Fig 2: The estimated source by 1R -NMF and 

Original source with SIR = 36.1622 dB (with scaling) 

.  
Fig 3: The estimated source by standard NMF and 

Original source with SIR= 23.5268. 

 
Fig 4: Original source in left and mixture source with 
noise (5dB) in right 
 

 
Fig5: Original source in right and estimated source 

by 1R -NMF in left. 

 

 
Fig 6: Hinton histogram for G (a) correlation for 

standard 1R  NMF, (b) correlation for NMF. 
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Table1: Performance of 1R -NMF and NMF for four 

datasets with 4 layers (maximum 1000 iteration / 
layer). 

Noise 1R -NMF NMF 

PSNR SIR 
Run 
time 

PSNR SIR 
Run 
time 

Speech4 31.53 35.82 27.56 25.15 21.65 15.52 
SP_Ex1_Signal
s 

30.33 34.77 11.91 24.83 32.69 8.410 

Speech8 28.90 36.64 14.97 23.48 28.73 11.72 
X_10rand_spar
se 

27.22 27.23 9.921 24.80 26.54 8.052 
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7. Discussions 

       We have introduced the 1R -NMF algorithm 

which is flexible and robust cost function and forms a 
basis for the development of a new class of 
multiplicative algorithms for NMF. This algorithm 
allows us to reconstruct (recover) the original signals 
and to estimate the mixing matrices, even when the 
observed data are imprecise and/or corrupted by 
noise. Extensive empirical studies have been 
performed on group of signals from NMFLAB, to 
demonstrate performance of our algorithm. 
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