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Abstract: This paper investigates an active control method is proposed to generalize projective synchronize two 

identical chaotic dynamical systems by constructing the response system no matter whether they are identical. The 

proposed technique is applied to achieve generalized projective synchronization for the Four - scroll attractor, where 

all state variables are in a proportional way. A strategy for practical implementation of a secure communication 

strategy is also discussed. Finally computer simulations are done to verify the proposed methods, and the results 

show that the obtained theoretic results are feasible and efficient. 
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1. Introduction 

Researchers from different areas, such as 

mathematicians, physicists, chemist, as well as 

control engineers have devoted themselves to 

examine the issue of synchronization over the past 

decade (Pacora and Carroll, 1990; Carroll and 

Pacora, 1991; Kocarev et al.,1992). Chaotic systems, 

in particular, have been applied to the development 

of secure communications, chemical reactions, 

biological systems and so on (Kocarev et al.,1992; 

Yuan and Jun, 2009; Zhu, 2009; Lu et al., 2002; Hua 

et al., 2005; Juan et al., 2012; Rafael and Yu, 2008 ). 

The system which received the most attention 

among chaotic communication systems perhaps is 

the Chua oscillator (Kocarev et al.,1992). This 

system belongs to general class of Lure systems 

(Khalil, 1996). 

Chaos control and synchronization have 

attracted a great deal of attention from various fields 

since Huber published the first paper on chaos 

control in 1989 (Hubler, 1989). Over the last 

decades, many methods and techniques have been 

developed, such as OGY method (Ott et al., 1990), 

PC method (Pacora and Carroll, 1990; Carroll and 

Pacora, 1991), feedback approach, nonfeedback 

control methods, adaptive method, nonlinear control, 

active control, and backstepping design technique, 

etc (Wang et al., 2001, Elabbasy et al., 2004; Wang 

and Ge, 2001; Jiang et al., 2002; Sun and Zhang 

2004). 

There are many applications to chaotic 

communication (Fallahi and Leung, 2010; Elabbasy 

and El-Dessoky, 2010) and chaotic network 

synchronization (Chow et al., 2001). The techniques 

of chaotic communication can be divided into three 

categories, (i) chaos masking (Kocarev et al., 1992), 

the information signal is added directly to the 

transmitter; (iii) chaos modulation (Boutayeb et al., 

2002), it is based on the drive – response (master-

slave) synchronization, where the information signal 

is injected into the transmitter as a nonlinear filter; 

(ii) chaos shift keying (Parlitz et al., 1992), the 

information signal is supposed to be binary, and it is 

mapped into the transmitter and the receiver. In 

these three cases, the information signal can be 

recovered by a receiver if the transmitter and the 

receiver are synchronized. 

In 1963, Lorenz found the first classical 

chaotic attractor. In 1999, Chen found another 

similar but not topological equivalent chaotic 

attractor the Chen attractor (Chen and Ueta, 1999). 

In 2002, Lü and Chen found a new critical chaotic 

system (Lü and Chen, 2002), bearing the name of Lü 

system. It is noticed that these systems can be 

classified into three different types by the definition 

of Vanĕŏek and Čelikovsky (Vanĕŏek and 

Čelikovsky, 1996): the Lorenz system (Lorenz, 

1963) satisfies the condition 12 21 0a a  , the Chen 

system (Chen and Ueta, 1999) satisfies 12 21 0a a   

and the Lü system (Lü and Chen, 2002) satisfies 

12 21 0a a  , where 12a  and 21a  are the 

corresponding elements in the linear part matrix 

3 3[ ]i jA a  of the dynamical system. 

The early projective synchronization (PS) is 

usually observable only in a class of systems with 

partial-linearity (Xu et al., 2001; Xu and Chee, 

2002; Xu and Li, 2002, Wen and Xu 2005), but 

recently some researchers (Zhigang and Daolin, 
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2001; El-Dessoky, 2010) have achieved control of 

the projective synchronization in a general class of 

chaotic systems including non-partially-linear 

systems, and termed this projective synchronization 

as generalized projective synchronization (GPS) 

(Yan and Li, 2005; Changpin and Jianping, 2006; 

El-Dessoky and Salah, 2011). 

In this paper, we generalize active control to 

GPS, and demonstrate this technique by some 

typical chaotic systems, for example, the chaotic 

Lorenz system and the chaotic Chen system such 

that GPS is achieved. The results from numerical 

simulations show that the method works well. 

The paper is organized as follows. In 

Section 2, the generalized projective synchronization 

with active control is applied to synchronize two 

identical Four-scroll attractor and numerical 

simulations are presented to show the effectiveness of 

the proposed method. In Section 3, a scheme of 

secure communication based on the active control of 

Four-scroll chaotic system is presented. Conclusions 

are finally given in Section 4. 
 

2. Generalized projective synchronization (GPS) 

of two identical Four-scroll chaotic attractor 
The projective synchronization means that 

the drive and response vectors synchronize up to a 

scaling factor a, that is, the vectors become 

proportional. First, we define the GPS below. 

Consider the following chaotic system: 

),(
.

txfx                                  (1) 

),,(),(
.

tyxutygy                  (2) 

where  
nRyx ,  are the state vector of the systems 

(1) and (2), respectively ; 
nn RRRgf ,  are two continuous 

nonlinear vector functions, ),,( tyxu is the vector 

control input. If there exists a constant α (α ≠ 0) , 

such that 0lim 


xy
t

 , then the GPS of the 

systems (1) and (2) is achieved, and we call α  is a 

scaling factor. 

Now, we apply the adaptive feedback 

control method for generalized projective 

synchronization of two identical Four-scroll attractor 

(Lü et al., 2002 & 2004; Liu and Chen 2004; 

Elabbasy et al., 2006; El-Dessoky, 2010) which can 

be described by:  

xyczz

xzbyy

yzaxx













                  (3) 

where a, b and c are positive control parameters. This 

system exhibits a strange attractor at the parameter 

values a=0.4, b=12 and c=5. This system bridges the 

gap between the Lorenz (Lorenz, 1963) and Chen 

attractors (Chen and Ueta, 1999), i.e. 12 21 0a a  .  

The divergence of the flow (3) is given by 
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Hence the system is dissipative when: 
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Science the system of Four-scroll attractor 

(3) is a dissipative system thus the solutions of the 

system of equations (3) are bounded as t for 

.cba   If 0,0  caba and 0cb  then 

the system has five equilibrium points: 
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Differing from other known similar systems, 

system (3) has five equilibrium, and does not have 

Hopf and pitch bifurcations [38, 39]. Of most 

interesting is the observation that this chaotic system 

not only can display a two-scroll chaotic attractor 

when a=4.5, b=12 and c=5 (Figure 1), but also can 

display a Four-scroll chaotic attractor when a=0.4, 

b=12 and c=5 ( Figure 2). 

 

 
Figure 1: The chaotic attractor of two- scroll attractor 

at a=4.5, b=12 and c=5 in 3-dimensional. 
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 Figure 2: The chaotic attractor of Four- scroll 

attractor at a=0.4, b=12 and c=5 in 3-dimensional. 
  

            In this section we apply the generalized 

projective synchronization of two identical Four-

scroll chaotic attractor. In order to observe the 

generalized projective synchronization behavior in 

the Four-scroll system, we have two Four-scroll 

systems where the drive system with three state 

variables denoted by the subscript 1 drives the 

response system having identical equations denoted 

by the subscript 2. However, the initial condition on 

the drive system is different from that of the response 

system. The two Four-scroll systems are described, 

respectively, by the following 

1111

1111

1111

yxczz

zxbyy

zyaxx
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and 

32222

22222

12222

uyxczz

uzxbyy

uzyaxx













          (5) 

 

There are three control functions iu , (i=1, 2, 3) to be 

determined later. 

Define the error vector as  

121212 , zzeandyyexxe zyx    

where α is a desired scaling factor. Then one obtains 

the error dynamical system by subtracting (4) from 

(5)  
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Referring to the original methods of active control, so 

we choose the three control functions iu , ( i=1, 2, 3) 

as follows: 
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then the error dynamical system (6) is described by  
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The error system (8) to be controlled is a 

linear system with a control input 321 , vandvv as 

function of the error zyx eandee , . As long as 

these feedbacks stabilize the system (8), 

zyx eandee ,  converge to zero as time tends to 

infinity, which implies that GPS of two identical 

Four-scroll systems is achieved with a scaling factor 

α. There are many possible choices for the control 

321 , vandvv . In order to make the closed loop 

system (8) be stable, the proper choice of the control 

should guarantees that the feedback system must 

have all eigenvalues with negative real parts. For 

simplify, we choose 
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In this particular choice, the three 

eigenvalues of the closed loop system (8) are -a, -b 

and -c. Since the closed loop system has all 

eigenvalues that are found to have negative real parts, 

the system will be convergence. In other words, this 

choice will result in a stable system and the GPS of 

two identical Four scroll systems. What deserves to 

be mentioned is that the values of the eigenvalues 

play an important role in the stability of the error 

system. In order to quicken the rate of convergence, 

we should make them get smaller. 

 
2.1 Numerical Results 

 By using Maple 12, we select the parameters 

of the Four-scroll attractor as a=0.4, b=12 and c=5. 

The initial values of the drive system and response 



Life Science Journal 2012;9(3)                                                          http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com             lifesciencej@gmail.com  2480 

system are taken as 

44.0)0(9.0)0(,77.1)0(

,32.0)0(,1.0)0(,23.0)0(

222

111





zandyx

zyx
 

respectively. If we take the scaling factor 

2 hence the error system has the initial values 

(0) 1.29, (0) 0.7x ye e   and   ( 0 ) 0 . 2ze    

then the generalized projective synchronization 

between two identical Four-scroll attractor are shown 

in Figure 3. If we take the scaling factor 2.0  

hence the error system has the initial values 

(0) 1.818, (0) 0.94x ye e   and 

(0) 0.504ze    then the GPS between two 

identical Four-scroll attractor are shown in Figure 4. 

If we take the scaling factor 1   hence the error 

system has the initial values 

(0) 1.54, (0) 0.8x ye e   and (0) 0.12ze   

then the complete synchronization between two 

identical Four-scroll attractor are shown in Figure 5. 

If we take the scaling factor 1  hence the error 

system has the initial values (0) 2, (0) 1x ye e   

and (0) 0.76ze   then the anti synchronization 

between two identical Four-scroll attractor are shown 

in Figure 6. 

 

 
Figure 3: Shows the trajectories of zyx eandee , of two 

identical Four- scroll attractor with scaling factor 

2 for generalized projective synchronization. 

 

 
Figure 4 : The trajectories of zyx eandee , of two 

identical Four- scroll attractor with scaling factor 

2.0 for generalized projective synchronization. 

 

 
Figure 5: The trajectories of zyx eandee , of two 

identical Four- scroll attractor with scaling factor 

1 for complete synchronization. 

 
Figure 6: The trajectories of zyx eandee , of two 

identical four- scroll attractor with scaling factor 

1  for anti synchronization. 
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3. The application in secure communication 

In this section, we will apply the adaptive 

scheme derived above to secure communication 

using the Four-scroll attractor. Assume that )(tm is 

the message signal, adding it to the right hand side of 

the second equation for the transmitter (drive 

system), then we have 

1 1 1 1

1 1 1 1

1 1 1 1

( )

x ax y z

y by x z m t

z cz x y

 

   

  

             (9) 

 

Select the output )(ty  of the system (9) as the 

transmitted signal, then construct the receiver as 

follows: 
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    where k  is a positive parameter. 

     

Let 

mpeandzzeyye   3122121 , . 
Then the error system can be described by 
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    Referring to the original methods of active 

control, so we choose the three control functions 

, ( 1,2)iu i   as follows: 

1 1 2 2 1 1u x e and u x e          (12) 

then the error dynamical system (11) is described by 

1 1 3
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Then we take the Lyapunov function : 

2 2 2

1 2 3

1
( ) ( )

2
V e ke e e            (14) 

 

It is clear that the Lyapunov function  ( )V e is a 

positive definite function. Now, taking the time 

derivative of equation (14), then we get 

1 1 2 2 3 3

2 2

1 1 3 2 1 3 1

2 2
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( )dV e
ke e e e e e

dt

dm
ke ke e ce ke e e

dt
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    Since the eigen-frequency of the message signal 

)(tm  is much less than the oscillating frequency of 

the chaotic system in practice 0
dm

dt
  . It is easy 

to have 
( )

0
dV e

dt
 . This can derive 

03  mpe   as t , that is 


)(tp
 can 

recover the message signal )(tm . 

Taking ( ) 0.1sin(0.1 ), 100,m t t k   initial 

values  

,32.0)0(,1.0)0(,23.0)0( 111  zyx   

6)0(4.0)0(,9.0)0( 22  pandzy . 

Figures 7(a, b) show shows that the trajectory of 3e  

of the error system with scaling factor 0.3   and 

0.4   , respectively. 

 

 
Fig. 7 (a): display the trajectory of 3e  of the error 

system with scaling factor 0.3  . 
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Fig. 7 (b): display the trajectory of 3e  of the error 

system with scaling factor 0.4   . 

 
4. Conclusion 

In this paper, an active control method is 

proposed for manipulating generalized projective 

synchronization in a general class of chaotic systems. 

This method is effective and convenient to 

generalized projective synchronize two identical 

systems and two different chaotic systems. Also we 

have proposed a scheme for a practical 

implementation of secure communication based on a 

active control method. Numerical simulations are 
also given to validate the proposed synchronization 

approach. 
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