
Life Science Journal 2012;9(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2470

AN EFFICIENT DATABASE SYNCHRONIZATION FOR MOBILE DEVICES USING SAMD
ALGORITHM

Dr. Venkatesh. J 1 , Aarthy. C2

1 School of Management Studies, Anna University Chennai, Coimbatore Regional Office, Coimbatore, India.

venkijv@gmail.com
2 Full Time Ph.D. Scholar, School of Management Studies, Anna University Chennai, Coimbatore Regional Office,

Coimbatore, India. mailtoaarthy@gmail.com

ABSTRACT: A Database Synchronization Algorithm for Mobile Devices recommends the SAMD
(Synchronization Algorithms based on Message Digest) algorithm based on message digest in order to aid data
synchronization between a server-side database and a mobile database. The SAMD algorithm makes the data at the
server-side database and the mobile database uses message digest tables to compare two data’s in order to select the
rows required for synchronization. If the two data’s are different, the synchronization progresses according to
synchronization policy. The SAMD algorithm does not use techniques that are reliant on specific database vendors:
neither does it use triggers, stored procedures or timestamps. The SAMD uses only the typical SQL functions for the
synchronization. Therefore the SAMD algorithm can be used in any mixtures of server-side database and mobile
database because of its objectivity of database vendor.
[Venkatesh. J. AN EFFICIENT DATABASE SYNCHRONIZATION FOR MOBILE DEVICES USING
SAMD ALGORITHM. Life Sci J 2012;9(3):2470-2476] (ISSN:1097-8135). http://www.lifesciencesite.com. 357

Key Words: Synchronization, adaptability, mobile database, client, server.

INTRODUCTION:

Recent advances in mobile technology and
equipment have led to the emergence of a new
computing environment and a variety of small sized
mobile devices such as PDAs (personal digital
assistants), smart mobile phones, HPCs (handheld
PCs) and Pocket PCs have been popularized. As
various network technologies are increasingly being
associated with such mobile devices, the processing
of business information can be available using mobile
devices. As a result, business models that rely on
mobile technologies are appeared. Mobile devices do
not have much computing power and rely on
batteries. Additionally, constant access to network is
difficult due to narrow bandwidth. Therefore, it is not
easy to process a large size of stored data and
maintain a continuous connection with the server-
side database. For these reasons, mobile devices have
mobile databases in order to achieve stable data
processing. Mobile devices download replications of
limited data from a connected server-side database
using a synchronization device that has a stable wire
communication function. Mobile devices process
various tasks using the data downloaded in an off-
line state. The work on the network disconnected
condition is a crucial point for mobility support.

 In a disconnected environment, there are
inevitable inconsistencies between the server-side
database and the mobile database. Synchronization
techniques can solve the data inconsistencies and
guarantee the integrity of the data. Consequently,
synchronization is an essential subject in mobile

device computing environments. Commercial DBMS
venders offer various solutions to data
synchronization in a mobile environment. However,
these solutions are not independent of the server-side
database because they use database dependent
information such as metadata or use specific
functions of server-side database such as trigger and
time stamp. In other words, the mobile database
vender should be equivalent to the server-side
database vender. The solution of operating a separate
synchronization server in the middle tier is
independent of the server-side database but dedicated
to the mobile database. That is, the synchronization
solution and the mobile database should be the
identical vender product. Because of these
restrictions, the extensibility, adaptability and
flexibility of mobile business systems are markedly
decrease. This problem must be solved in order to
build efficient mobile business systems because
upcoming mobile environments will have
heterogeneous characteristics in which diverse
mobile devices, mobile databases, and RDBMS exist.
1.2 Synchronization:

Good Synchronization is a file synchronization
tool that enables user to backup user files and/or
synchronize them with another location such as a
different drive, folder, USB drive, network location
or Amazon S3 storage account. The program
supports one-way and two-way synchronizations, it
can propagate deletions and check for conflicts,
which can be reviewed and approved before
executing the synchronization. User can also execute

Life Science Journal 2012;9(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2471

jobs automatically when a removable device is
connected, periodically, or schedule via Task
Scheduler. Other features include file filters and
exclusions, support for time shifts, chained syncing,
backup of deleted files and more.
1.3 Smart Synchronization Mechanism:

The synchronization method for all applications
based on Smart Synchronization has the following
features:

Many of the features in the synchronization
components of Smart Synchronization are intended in
such a way that they promise in-order message
processing and one-time message delivery at all
times. The message delivery assurance is the
accountability of the synchronization layer. The
architectural diagram for smart synchronization is
represented in Fig: 1. each message from a device is
measured in Smart Synchronization with an
eminence. The administrator can view each of the
messages in different states.

Smart Synchronization is a context that is
particularly intended to offer the development tools
and synchronization features essential for offline
applications. Smart Synchronization methods are,
therefore, usually accomplished in asynchronous
mode in the SAP MI Server Component.
Synchronous mode for synchronization is also
available. The basic synchronization mechanisms are
indistinguishable for both synchronous and
asynchronous mode. Technically, the same
messaging protocol is used for both modes. The
variance lies in the timing for expecting response
from the server. In the SAP MI Client Component,
there is no application-specific coding that directly
interacts with the synchronization process.
Application-specific coding is only necessary when
dealing with local data using the MI Client APIs. For
application data that is stored locally in the
persistence layer, the underlying components of the
MI Client APIs keep the device data synchronized
with the back-end. Error and conflict handling are
exceptions. To handle synchronization errors using
application-specific logics, Smart Synchronization
offers features to access details error and conflict
information.
2. SYSTEM ANALYSIS:
2.1. Existing System:

The existing system faces certain issues in
algorithm like clock synchronization, event based,
non-block synchronization and default
synchronization algorithm which are discussed as
follows.
Clock synchronization:

Clock synchronization is a hindrance from
computer science and engineering which deals with
the indication that internal clocks of several

computers may vary. Even when primarily set
precisely, real clocks will differ after some amount of
time due to clock drift, caused by clocks counting
time at slightly different rates. There are several
hitches that occur as a consequence of rate variances
and several solutions, some being more suitable than
others in certain situations. In serial communication,
some people use the term “clock synchronization”
just to deliberate getting one metronome like clock
signal to pulsation at the same frequency as another
one frequency synchronization and phase
synchronization. Such “clock synchronization” is
used in synchronization in telecommunications and
instinctive baud rate detection.

Fig: 1 Architecture of Smart Synchronization

Problems:

In addition to the erroneousness of the time
itself, there are difficulties related with clock skew
that take on more intricacy in a distributed system in
which several computers will need to comprehend the
same global time. For instance, in UNIX systems the
make command is used to assemble new or revised
code without the need to recompile unchanged code.
The make command customs the clock of the
machine it runs on to regulate which source files need
to be recompiled. If the sources exist in on a separate
file server and the two machines have
unsynchronized clocks, the make program might not
produce the correct results.
Event-based synchronization:

 A synchronization method and apparatus
describes event objects to permit synchronization of
execution units (e.g., threads). In one procedure, the
synchronization method and apparatus is used in
aggregation with a UNIX operating system. By
describing event objects on which threads or other
execution objects can wait upon, multiple threads can

Life Science Journal 2012;9(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2472

wait on one event, or otherwise, one thread can wait
on multiple events. Besides, using the event-based
synchronization method and device, it is conceivable
to specify behavior, mainly when one thread or other
execution object waits on multiple events. For
example, the performance indicated can be that a
condition is gratified if any of the events occur, if all
of the events occur, or some other logical
combination of events occurs.
Non-Block Synchronization Algorithm:

Java provides supports for additional atomic
operations. This allows to develop algorithm which
are non-blocking algorithm, e.g. which do not require
synchronization, but are based on low-level atomic
hardware primitives such as compare-and-swap
(CAS). A compare-and-swap operation checks if the
variable has a certain value and if it has this value it
will perform this operation. Non-blocking algorithm
are usually much faster than blocking algorithms as
the synchronization of threads appears on a much
finer level (hardware)
Default Synchronization Algorithm:

The default synchronization algorithm starts
when an attention identifier (AID) key is pressed. An
attention identifier (AID) key is any key that
generates a presentation space update. Primarily, the
state of the terminal is UNINITIALIZED. The
procedure waits for a period of time for updates to
the presentation space. User can modify the wait time
in the Timeout field in the preferences window. The
nonappearance wait time is 1200 milliseconds. If
Timeout is set to 1200 milliseconds, and an update
arises during the last 600 milliseconds, the process
waits for an additional 600 milliseconds for extra
updates. During this extra wait period, added update
occurs during the last 300 milliseconds, the algorithm
waits again for another 600 milliseconds for further
updates. This continues until no updates are received
during the last half of the last additional time period.
At this point, the state of the terminal is either
LOADED (keyboard locked) or READY (keyboard
unlocked), reliant upon the OIA status. Thus to
conclude the existing system faces few disputes like
slow indexing, poor extensibility, flexibility, low
synchronization, reliant on database vendors, less
secured, high cost.
2.2 Proposed System:

To overwhelm the above hitches we have
hosted the algorithm SAMD (Synchronization
Algorithms based on Message Digest). SAMD
resolves synchronization glitches using only standard
SQL queries as trained by the ISO. This is monitored
by a possible synchronization of any data
combination irrespective of the kind of server-side
database or mobile database. The SAMD thus would
offer extensibility, compliance and flexibility. The

SAMD makes the data’s at the table of the server-
side database and the mobile database using a
message digest algorithm; then the data’s, and the
message digest values are saved in the message
digest tables on both sides.
3. SYSTEM IMPLEMENTATION:

The Fig.2 represents a synchronization
framework using a synchronization server in a mobile
business environment. The whole framework consists
of a server-side database, synchronization server
(AnySyn) and multiple mobile devices with internal
mobile databases. The server-side database maintains
all of the data required for business, and the mobile
database downloads copies of data the user needs
from the server-side database. The synchronization
server is located between the two databases to
synchronize the data and manage additional
information required for synchronization. The
AnySyn synchronization server performs
synchronization based on the SAMD algorithm. The
synchronization policy is established in AnySyn, and
the load caused by accessing the server-side database
is minimized by operating a connection pool. Every
mobile device uses a separate toolkit to access the
AnySyn server over a wired network to perform
synchronization.

Fig .2 SAMD Synchronization Framework

Row Inconsistency:

An inconsistency refers to a state in which the
published data in the server-side database and the
subscribed data in the mobile database carry different
values due to a change at either side. The two
databases add, delete and modify data independently,
which makes inconsistency inevitable. The Table.1
displays every case for an inconsistency for a single
row.

Among the 16 cases indicated in Table.1, Cases
6, 7, 8, 10 and 14 include the ADD operation, which
cannot occur for a single row. For example, in Case 7
the row added at the server side is different from the
row modified at the client; therefore, it cannot be

Life Science Journal 2012;9(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2473

considered an inconsistency. Case 7 is equivalent to
Case 3 and Case 5 occurring independently. Similar
reasoning can be made for Cases 6, 8, 10 and 14, so
SAMD does not consider the five cases.

Table 1: Inconsistency Table

(Source: Mi-Young Choi et.al)

Message Digest Algorithm:
Message digest algorithm consists of a

unidirectional hash function that maps a message of a
random length to a fixed-length hash value. Message
digest h is created by the hash function H, which can
be expressed in equation (1):

h = H (M) (1)
 M is a message of a random length and H (M) is
a fixed-length message digest. Even a single bit
changed in the message causes a change of message
digest value.

Fig. 3. Message Digest Mechanism

(Source: Mi-Young Choi et.al)

 The Fig. 3 demonstrates how this message digest
mechanism can be applied to a relational database to
examine data identity between rows of two tables.
Data in two rows are identical if two rows in Tables
A and B have identical message digest values. If the
two values are different, it means that the two rows
have one or more different column values.
Accordingly, this method can be useful in detecting
inconsistency between two rows once a row with an
inconsistency is detected; the row is copied using the
primary key in the direction of synchronization
according to the synchronization policy. This
synchronization algorithm identifies a modified row
without relying on the database's internal functions,
logs or metadata to enable synchronization that is
independent of the database vender.

Fig. 4 Algorithm Design

SAMD synchronization algorithm satisfies the
following objectives.
 1) Independence of vendors.
 2) Synchronization using only standard SQL
statements.
 3) Disallows schematic modification of data
table of the server-side database.
 4) Disallows adding restrictions in implementing
applications.
5. SAMD Algorithm Explanation:
 SAMD Synchronization Algorithm displays
(Fig.4) the table schema of the server-side database
and the mobile database where the SAMD
synchronization algorithm is applied. Both databases
have a data table (DSDT: Database Server Data
Table, MCDT: Mobile Client Data Table) and a
message digest table (DSMDT: Database Server
Message Digest Table, MCMDT: Mobile Client
Message Digest Table). The data table contains the
business data, and the message digest table stores the
message digest value from the data table. The
message digest table consists of a PK column of data
table, message digest value (MDV) column, flag (F)
column and mobile device ID (Mid) column. The flag
column signals an inconsistency that has occurred in

Life Science Journal 2012;9(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2474

the corresponding column; therefore, the flag column
is used to identify a row that requires
synchronization. The mobile device ID is a unique
number of the mobile device, so this column is used
to identify a mobile device that requires
synchronization. In SAMD Synchronization
Algorithm, if a row’s PK value is A1, this value is
identical to the two message digest values and there
is no need for synchronization. However, if a row has
a PK value of C1, the value of MDV in MCMDT is
different from the value of MDV in DSMDT and the
MCMDT flag value is 1.

 Consequently, synchronization is necessary.
The synchronization process is performed for each
row to resolve all of the inconsistencies mentioned.
For instance, if there is a discrepancy in row C1,
synchronization proceeds from the mobile database
to the server-side database and DSDT’s PK C1 row is
swapped with the MCDT’s C1 row. Thus, the two are
same synchronization algorithms applied to diverse
tables. Here, the message digest values that are
created with each row value of the data table, and the
message digest values of the message digest table, are
associated. If the values are alike, there has been no
modification in the data and synchronization is not
required. If the values are different, it means that the
data table value has been changed, in which case the
message digest table has to be updated with new
message digest values and the flag has to be set to 1.
Flag value is used to identify a row that needs
synchronization. The server-side database has one
DSMDT for every DSDT. Although the size of the
MCMDT is smaller than that of the DSMDT, there is
an MCMDT for every mobile device that has a
unique ID. It is very inefficient to perform
Synchronization 2 for every row of the DSDT every
time there is a synchronization request from a mobile
device. Therefore when the mobile device requests
synchronization, the mobile device ID value is sent to
the server-side database and then the SAMD
algorithms select the row from DSMDT whose value
of mid column is the same as the mobile device ID
value and Synchronization 2 is only applied to the
selected rows. For example, a mobile device whose
mobile device ID value is ‘md1’ requests
synchronization, the rows whose value of mid
column is ‘md1’ are selected and then only used in
Synchronization 2. After SAMD algorithms analyze
the type of inconsistency using the flag values of
both messages digest tables, primary key, which
is used to identify the row. Therefore,
Synchronization 3 is performed between two data
tables for each inconsistent type. Upon completion of
synchronization, the flag of the synchronized row is
set to 0 in the message digest table. Most mobile
devices have limited resources, and the load on the

device should be minimized during the
synchronization process.

Accordingly, all message digest tables are
located in the server-side database to economize
storage space of the mobile device, as shown in Fig.,
while there is the load caused by accessing the
network in Synchronization 1 but the data size of
MCDT is smaller than the server. Furthermore, the
MCDT data necessary for Synchronization 1 is sent
to the server-side database in a single transmission
over a wired network using an SQL query capable of
batch processing. After this point, there is no load on
the mobile device, which reduces the load caused by
network access in the Synchronization 1 stage. The
following snap shots explain in detail about the
process undergone and the output obtained in each
synchronization stages.

Fig. 6.SAMD and Server Starting Page

Fig.7 Login Page

Life Science Journal 2012;9(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2475

Fig.8 Insert Page

Fig. 9 Mobile Client Digest Model

Fig. 10 Comparison of Database Server Message
Digest Table and Mobile Client Message Digest

Table

Fig. 11 Mobile Client Message Digest Table after

Modification

CONCLUSION:

This work suggests an SAMD synchronization
algorithm based on message digest for synchronizing
between server-side databases and mobile databases.
The SAMD algorithm is performed with only SQL
functions of relational databases, so that it is not
dedicated to particular vendors and is available for
use in combination with any server-side databases
and mobile databases. Therefore, extensibility,
compliance and flexibility are assured when a mobile
business system is ratified. This feature is vital in
order to build effective mobile business systems since
the upcoming mobile business situation has varied
features in which diverse mobile devices, mobile
databases and RDBMS exist.

FUTURE ENHANCEMENTS:

The work can be enhanced by integration of
heterogeneous application to mobile devices. The
system can use more volatile and robust Dynamic
database storage improvement in mobile clients. The
system can be further established for simultaneous
and multiple applications processing.

REFERENCES:
1.Gye-jeong kim, seung-cheon baek, hyun-sook lee,

han-deok lee,moon jeun, Joe (2006),
“LGeDBMS: A small DBMS for embedded
system with flash memory”, 32nd
international conference on very large data
bases, pp.1255-1258,.

2. Joshua savil, (2008), “Moblink Synchronization
Profiles’, A white paper from Sybase
iAnywhere, October 17.

3. Mi-Young Choi, Eun-Ae Cho, Dae-Ha Park,
Chang-Joo Moon, Doo-Kwon Baik, (2009),

Life Science Journal 2012;9(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 2476

“A synchronization algorithm for mobile
devices for ubiquitous computing”

4. Mi-seon choi,young-kuk kim, juno chang (2008),
“Transaction-centric split synchronization
mechanism for mobile E-business
applications”, April 20th.

5. Mi-Young Choi, Eun-Ae Cho, Dae-Ha Park,
Chang-Joo Moon, Doo-Kwon Baik (2010), “A
Database Synchronization Algorithm for
Mobile Devices”, Vol. 56, No. 2, May 2010.

6. Santashilpal Chaudhuri, Amit kumar saha, David
B.Johnson (2007), “Adaptive clock

synchronization in sensor networks”, March
31st.

7. Xianzhong tian;younggang miao; Tongsen HU;
Bojie fan; Jian pian; wei xu (2009),
“Maximum likelihood estimate based on time
synchronization algorithm for wireless sensor
networks”.

8. Ziad itani, Hassan diab, Hassan Artail (2005),
“optimistic pull based replication for mobile
devices”.

9/7/2012

