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Abstract: Here, the existence and the uniqueness of the solution of a class of a nonlinear integral equation with 
discontinuous kernel are discussed and  proved. A degenerate kernel method is used, as a numerical method, to 
obtain a class of a system of a nonlinear algebraic equations.  Many important theorems related to the existence and 
uniqueness of the produced algebraic system are derived. Finally, numerical examples are discussed and the error 
estimate, in each case, is calculated.  
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1. Introduction 

Integral equations of various types and kinds 
play an important role in many branches of linear and 
nonlinear functionals analysis and their applications in 
the life science, mathematical physics, engineering and 
contact problems in the theory of elasticity (see [1-3]). 
Therefore many different methods and numerical 
treatments are established to obtain the solution of the 
NIE. For these methods see Brunner et al. [4], Kaneko 
and Xu [5], Kilbas and Saigo [6], Dariusz [7], Abdou et 
al. [8,9], and Diogo and Lima [10].  This paper is 
concerned with finding a numerical solution of the 
following functional integral equation  
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where  , , kf  and g  are known continuous functions 

while   is unknown function,   is a constant 

determine the kind of the IE and   is a constant, may 
be complex, and has many physical meanings.  The 
importance of Eq.(1) comes from it's special cases, for 

example when )(=))(,( xuxuxf   ,   we have  
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This equation is called a Hammerstein integral 
equations.  

In this work, the existence and uniqueness 
solution of Eq.(1), under certain conditions, are 
discussed and proved. Also, we present the degenerate 
kernel method and we consider the problem of the 
existence and uniqueness of the solution of the new 
NAS associated with the degenerate kernel. Also, the 
convergence problem of the numerical solution is also 
considered. Many examples are presented and the error 
estimate, in each case, is computed.  
2. The existence and uniqueness solution 

In order to guarantee the existence of a unique 
solution to Eq.(1), we will assume throughout this 
work the following conditions: 

(i) The kernel ),( yxk  and the given function )(xg  

are in the class [0,1])([0,1]C  and satisfies, in 

general the condition  
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(ii) The two continuous functions ))(,( xuxf  and 

))(,( xvx , where [0,1] x , and ),(, vu  

satisfy the condition  
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( 21,CC  are constants). 

(iii) The two functions ))(,( xuxf  and ))(,( xvx  

satisfy Lipschitz condition for the second argument  

|,)()(||))(,())(,(| 21121 xuxuDxuxfxuxf 
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( 1D  and 2D  are constants). 

Theorem  (1): Under the following condition  
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the NIE (1) has a unique solution in [0,1]2L  where 

the radius of convergence is given by  
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This can be proved by a direct application to the 
Banach contraction principal. To obtain a higher order 
convergence rate, we need to assume higher order 

smoothness conditions on the kernel ),( yxk .  

 
3. Degenerate kernel method 

Suppose that ),( yxkn  is an approximation of 

the kernel ),( yxk  and that it is of the degenerate form  
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n                                    (2) (2) 

where )}({ xBi  and )}({ yCi  are assumed to be a 

linearly independent set of functions in [0,1]2L . Also, 

we assume  
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 Hence, the expected solution of the NIE associated 

with the degenerate kernels ),( yxkn  which converges 

to the exact solution of Eq.(1) is of the form  
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 To obtain the solution of this equation, )(xn , we use 

(2), in this equation to get  
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 Once the constants ni,  have been determined, the 

approximate solutions of  (5) are obtained.  
Substituting (5) into (6), we have 
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 Then, the formula (7) represents a NAS, which can be 
written in a vector notation as  

)(=  F                                     (9) 

 where ),,,(= 21 n
T   and 

))(),...,(),((=)( 21  n
T FFFF . 

In other words, the numerical solution of the NIE (1) 
reduces to an optimization problem in which an 
unknown scalar vector   is to be found such that   

)( F   is minimized. 

 
4.Nonlinear algebraic system 
           Now, we shall show that, under some mild 
assumptions, the unique solution of the NAS (9) 
corresponds to the unique solution of Eq.(5) for each 

.1,2,3,=, nn .  

To prove that the NIE (5) has a unique solution in 

[0,1]2L , we write Eq.(5) in the integral operator form  
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 Also, in view of conditions (i) and (iii) there exists an 

integer N  such that for each Nn > , and after 
neglecting a very small constant, we have  
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Theorem (2): Under the conditions (ii), (iii) and  (12), 
the NIE (5) has a unique solution.  
The proof of this theorem depends on the following 
two lemmas.  
 Lemma 1: Under the conditions (12) and (ii) the 

operator nW  defined by (10) maps the space [0,1]2L  

into itself.  
Proof:  In view of the formulas (11) and (10), we get  
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 Applying Cauchy-Schwarz inequality, then using the 
conditions (12) and (ii), the above inequality can be 
adapted to  
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 The last inequality shows that, the operator nW  maps 

the ball 
1

S  into itself where  
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 Moreover, the inequality (14) involves the boundness 

of the operator W  and W  given by Eq.(11) and  of  
Eq.(10) respectively.  
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lemma 2 : Under the conditions (12), (ii) and (iii) the 

operator nW  is continuous in the space [0,1]2L .  

Proof : For two functions 1  and 2  in [0,1]2L , we 

have  
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Applying Cauchy-Schwarz inequality, and with the aid 
of conditions (12) and (iii), we get  
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 This inequality shows that, the operator W  is 

continuous in the space [0,1]2L . Moreover under the 

condition 
21
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 , the operator nW  is a 

contractive in the space [0,1]2L . Then by Banach 

fixed point theorem, the operator nW  has a unique 

fixed point which is, of course, the unique solution of 
Eq. (5) .  

Now, we go to prove that the NAS of Eq.(9) has 
a unique solution. And this solution is the same 
solution of Eq. (5).  
Theorem (3) : Under the condition  
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 The NAS (9) have a unique solution 
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 is the unique solution of Eq. (5).  

Proof: Define the discrete 2  norm by 
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Using the condition (iii) on  , we follow  
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Finally, we have  
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Using the condition (17), H  is a contraction operator 

in )(2 n . There fore H  has a unique fixed point 
* ,  

i.e )(= **  H . For this 
* , it is obvious that 

)(xn  defined by (18) is a solution of (9), and by 

Theorem  (2), )(xn  is the unique solution of (5).  

 
5.The convergence  

      In this section, we study the rate of 

convergence of the the approximate solution )(xn  to 

the solution of Eq.(1), )(x .  

Theorem (4) : If condition (3) holds and if  
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 Proof :  We can write  
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Using condition (iv) and the inequality properties, we 
obtain  



Life Science Journal 2012;9(3)                                                          http://www.lifesciencesite.com 

 

2130 
 

1/22
1

0

2
1

0

1

0
1

]|)(,(|

|),(),(|{[|

|||||

dyyy

dxdyyxkyxkD n

n











 



}.]|))(())(,(|

|),(|[          

1/22
1

1

0

2
1

0

1

0

dyyyyy

dxdyyxk

n

n

 






 

Using the conditions (12), (iii) and (iv) and with the aid 
of Eq. (19), we have  
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6. Examples 
 Example 1:  

Consider the integral equation  
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Assume .=)( ,=)( 1
2

1 yyCxxB Hence Eq.(5) gives 

an approximate solution of the above equation in the 
form  
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Using Eq.(6), the parameter   is given by  
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Solving this equation, we have 
4

1
=  or 

36

1
=  

and hence the approximate solution is xx =)(*  or 
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x .  

Example 2:  
Consider the integral equation 
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Assume 

yyCyCyCxxBxB =)( 1,=)( 1,=)( ,=)( 1,=)( 21121

. Hence, Eq. (5) gives 
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Using Eq.(6), the parameters 21,  are given by  

,})](*[)({= 22
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Solving these equations, we obtain 

37}0.15182070= 63,0.22069777={ 21   or 

84}0.21286063= 93,0.33900854={ 21  .  

 
7. Discussions  
  We see from this paper that the numerical 
solution of the functional integral equation, Eq. (1) 
reduces to an optimization problem, Eq.(9 ). Once we 
obtain the solution of this optimization problem, an 
approximate solution to the functional  integral is 
obtained. In practice, searching for this optimal 
solution is not an easy question.  In example one, we 
found two solutions in which one of these two 
solutions   gives us the exact solution. In example 2, we 
obtained a system of two algebraic equations each is of   
order four. One of this four solutions gives us a very 
good approximate to the exact . Among of the these 

solution, we select the solution in which )( F  

is minimized. 
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