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Abstract: According to the non-stationary characteristics of ball bearing fault vibration signals, a ball bearing fault 
detection method using FFT, STFT energy entropy and root mean square is put forward. In this paper, first, original 
rushing vibration signals are transformed into a frequency domain, then, the STFT transformation is calculated in the way 
that first the frequency resolution and then the time resolution has been assumed to be high. Then the theory of energy 
entropy mean and root mean square is proposed. The analysis results from energy entropy and root mean square of 
different vibration signals show that the energy and root mean square of vibration signal will change in different frequency 
bands when bearing fault occurs. Therefore, to diagnose ball bearing faults, we run the test rig with faulty ball bearing in 
various speeds and loads, and collect vibration signals in each run; then, we calculate the energy entropy mean and root 
mean square which are indicators of the type of faults. The analysis results from ball bearing signals with three different 
faults in various working conditions show that the diagnosis approach based on the utilization of, STFT and FFT for 
extracting the energy and root mean square of different frequency bands can identify ball bearing faults accurately and 
effectively. We have optimized signal decomposition levels with the use of analysis, and then, interestingly enough, we 
have introduced a new method to effectively diagnose different faults of rolling bearings. 
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1. Introduction 

The vibration signals of a ball bearing operating with 
faults will present non-stationary characteristics, and 
how to extract the fault characteristic information from 
the non-stationary vibration signals is the crux of the ball 
bearing fault diagnosis [1-3]. This is performed in 
traditional diagnosis techniques with    the waveforms of 
the fault vibration signals in the time domain, and thus, 
construct the criterion functions to identify the working 
condition of roller bearings. However, because the 
nonlinear factors such as loads, clearance, friction, 
stiffness and soon have distinct influence on the 
vibration signals due to the complexity of the 
construction and working condition of ball bearings, it is 
very difficult to make an accurate evaluation of the 
working condition of roller bearings through the analysis 
in time domain only [4,5]. FFT analysis have had 
extensive use in diagnosis of faults of roller bearings, as 
they are both capable of extracting time and frequency 
local features of the signal [6-8]. Due to the limitation of 
the length of the FFT bases, energy leakage will occur in 
FFT transformations. Moreover, Fourier analysis has 
been the most widely used analysis method of signals for 
the detection of bearing faults. However, there are some 
crucial restrictions of the Fourier transform [6]: the 
signal to be analyzed must be strictly periodic or 
stationary; otherwise, the resulting Fourier spectrum will 
make little physical sense. Unfortunately, the vibration 
signals of rolling bearings have often non-stationary 
nature, and indicate non-linear processes; moreover, 
their frequency components can vary over time. 
Therefore, the Fourier transform often fails to pretty 
successfully diagnose the type of faults occurred in  

 
 
 
rolling bearings. On the other hand, since in time–
frequency analysis methods the one-dimensional signal 
is mapped to a two-dimensional time–frequency plane, 
the information of both of time and frequency domains 
of a signal can be simultaneously produced. Therefore, 
in the later studies, the time–frequency analysis methods 
are widely used to detect the faults in bearings since they 
can determine not only the time of the impact occurring 
but also the frequency ranges of the impact location, and 
hence can determine not only the existence of faults but 
also the causes of faults [9]. 
 In this paper, FFT, STFT is applied to the ball bearing 
fault diagnosis. First, the original acceleration vibration 
signals is transformed into a frequency, STFT domain, 
then the concept of energy entropy mean and root mean 
square  is proposed, which defined by calculating the 
mean value of the vibration signal entropies and root 
mean square of a bearing with a fault in different various 
speeds a loads. By studying the energy entropy means 
and root mean square of different working condition 
signals we illustrate that it will change when different 
bearing fault occurs. Similarly, the original signal is 
decomposed by the wavelet packet, and then the energy 
entropy mean are extracted accordingly from the time 
series that are obtained after the wavelet coefficients are 
reconstructed. To diagnose ball bearing faults, we run 
the test rig with faulty ball bearing in various speeds and 
loads and collect vibration signals in each run, and then 
calculate the energy entropy mean in frequency domain 
and root mean square in frequency domain which 
indicate the fault types. 
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1. Experimental Procedure 

Three data sets each containing twenty data files were 
collected from three bearings which are the same but 
with different faults. The first data file was collected 
from each test bearing when the loading was zero and 
the bearing was running at the highest speed (2000 
rpm).The load was then increased step by step, the speed 
was kept at 2000rpm, and four other data files were 
collected. The load was then brought back to zero and 
speed was decreased by 1000 rpm and the next five data 
files were collected under five different loads similar to 
the first five data files. This procedure was continued 
until all twenty five sets of data were collected. The 
sampling frequency was chosen as 41.67 kHz, this 
sampling frequency along with the data record size of 
4098 guarantees that the sampling procedure covers at 
least 1.6 revolutions of shaft at the lowest speed.  
 
 

2.1- Test Bearings  

An impact impulse is generated every time a ball hits a 
defect in the raceway or every time a defect in a ball hits 
the raceway. Each such impulse excites a short transient 
vibration in the bearings at its natural frequencies. Each 
time this defect is rolled over an impact is produced the 
energy of this impact depends on the severity of the 
defect Many failure modes of a rolling element bearing 
produce such a discontinuity in the path of the rolling 
elements, Moreover the majority of rolling element 
bearing failure cases begin with a defect on one of the 
raceways. In this research defects on inner raceway 
(IRD), outer raceway (ORD), balls (BLD) and abrasive 
in cage (ABR), poor lubrication (PRL) defect were 
introduced in the form of scratches. These scratches 
provide the aforementioned discontinuity in the path of 
rolling elements. Therefore a rolling element bearing 
with a nick or a fatigue spall or even a brindled bearing 
affects the time domain signal very similar to a bearing 
which has a scratch on one of its components. 
 

2.2- Fast Fourier transform (FFT) 

A Fast Fourier transform (FFT) is an efficient algorithm 
to compute the discrete Fourier transform (DFT) and its 
inverse. There are many distinct FFT algorithms 
involving a wide range of mathematics, from simple 
complex-number arithmetic to group theory and number 
theory. An overview of the available techniques and 
some of their general features has been presented in this 
article. 
A sequence of values is decomposed into different 
frequency components through using a DFT.  Though 
this operation is effective in many fields (see discrete 
Fourier transform for properties and applications of the 
transform), it is often too time-consuming to be 
practically computable from the definition. On the other 
hand, an FFT is able of quickly computing the same 
result; that is,  the computation of  a DFT of N points 
with the use of the definition takes O (

2N ) arithmetical 
operations, while an FFT computes the same result with 

only O (N log N) operations. The computation speed in 
these two methods is substantially different,  particularly 
for long data sets with  N of the order of   thousands or 
millions; thus,  the computation time in such cases can 
be practically reduced by several orders of magnitude, 
and also, the improvement is approximately  
proportional to N/log (N). This huge improvement has 
made many DFT-based algorithms practical; FFTs are of 
great importance to a wide variety of applications, from 
digital signal processing and solving partial differential 
equations to algorithms for quick multiplication of large 
integers [10,11]. 
 

3. Short-Time Fourier Transform  

The Short-Time Fourier Transform (STFT) (or short-
term Fourier transform) is a powerful tool for the 
purpose of signal processing which characterize a 
specifically useful class of time-frequency distributions 
which can indicate complex amplitudes versus time and 
frequency for any signal. The following formula gives 
the definition of the STFT transformation:    

(1)  ( . ) ( ) ( ) iwtsf b w f t g t b e dt
+∞

−

−∞

= −∫  

As it can be seen in E. (1), STFT is a time-frequency 
transformation; that is, it represents all the information 
of time, frequency and domain of the signal 
simultaneously. STFT is an indication of energy 
conservation law which states that: 
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With the use of Parsoval equation 2, the following 
relation can be obtained: 
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Using the short-time Fourier transformation, the signal 
can be revised as the following equation: 

(4)  
1( ) ( . ) ( )

2
iwtf t sf b w g t b e dbdw

π

+∞ +∞

−∞ −∞

= −∫ ∫  

     The weakness of STFT it is impossible to have high 
resolution in both time and frequency domains.  
 
The Discrete Fourier Transform (DFT) is an invertible 
transform and an important tool widely used in signal 
processing and analysis. DFT can be computed with the 
use of stable efficient algorithms known as Fast Fourier 
Transform (FFT) algorithms. Its applicability is for cases 
with discrete time and frequency variables. Let nx and 

kX  respectively represent the discrete time signal and 
the discrete frequency transform function. The DFT is 
given by  
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Where  
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Root Mean Squared (RMS) AND Energy entropy 
The RMS value of a signal is directly related to the 
energy or destructive ability of the signal. Energy and 
root mean square of a signal are obtained in equation (7) 
and (8) 
 

2

1
| ( ) |

n

i
E x i

=

= ∑                                                       (7) 

[ ]21 ( )rmsX x n
N

= ∑                               (8) 

Where x (i) the amount of vibration signals have 
sampling point i and n total number of samples used to 
are. If the vibrations signal to the original components of 
the analysis, we formed m components separately and 
we will calculate the energy of each component to the 
set the energy distribution reached. Because each 
component Posts Contents are different frequency, 
energy distribution consisting of a space frequency can 
be 

1 2{ , ,... }mE E E E=                                (9) 
Energy and entropy as defined in [20]: 

1

log
m

EN i
i

H P pi
=
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i

EP
E

=  is the percent of the energy of ith in the 

whole signal energy
1

m
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i

E E
=
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4. Results and discussion 

4.1- FFT Energy Root Square and Energy Entropy  
 

In this stage, the original signal was transformed into 
the frequency domain; then, three dominant frequency 
band widths were observed. These three ranges are 
shown in Tables (1). Thus the values of energy root 
mean squares (RMS) in each of these ranges were 
calculated according to Eq. (8); moreover, the sum of 
RMS in all three ranges was obtained. Thereafter, the 
ratios of the energies of each of these ranges to the total 
energy were calculated; furthermore, with the use of Eq. 
(10), the entropy energies for each of three types of 
faults were obtained. Here, from the values shown in the 
table, it can be simply inferred that both of these criteria; 
i.e., entropy energy and RMS, can be utilized for the 
purpose of fault diagnosis. 
Also in this section, the original acceleration vibration 
(Fig.1), frequency spectrum (Fig.2-4) of signal for three 
type faults at 2000 rpm speed and 1000N load are 
shown. The FFT energy Root mean squares and energy 

entropy for three different faults at 2000 rpm speed and 
1000N load are shown in table 1 and 2.  
 

 

 

 
 

Fig.1. Original acceleration vibration of the signal for three different 

faults 

 

 
Fig. 2. Amplitude spectrum of the signal for ABR faults at 2000 rpm 

speed and 1000N load. 
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Fig. 3. Amplitude spectrum of the signal for BLD faults at 2000 rpm 
speed and 1000N load. 

 
 

 
Fig. 4. Amplitude spectrum of the signal for GBR faults at 2000 rpm 

speed and 1000N load. 
 
 
 

Table 1. The FFT energy root mean square for three different faults at 
2000 rpm speed and 1000N load. 

 

GBR BLD ABR frequency-band  (HZ) 

17.3036 1.0483 26.1151 10_325 

6.4114 9.9035 28.7072 2760_3035 

0.7805 1.1062 12.9435 18330_18560 

 
 
 
 
 
 
 
 

 
 

 
Table 2.  The FFT energy entropy  for three different faults at 2000 

rpm speed and 1000N load 
 

GBR BLD ABR 

0.5149 0.9998 0.9761 
 

. 
 
4.2- STFT Energy Root Mean Square and Energy 

Entropy  
 
In this stage, we have used two approaches to choose the 
window. In the first approach, time resolution has been 
increased; thus, frequency resolution would have been 
decreased. Furthermore, the second approach has been 
considered to be the opposite of the first approach.  
In the first approach, a matrix with the dimensions 
417*8 has been obtained whose frequency and time axes 
have been divided into 417 and 8 parts, respectively. The 
column windows can be clearly seen form Fig. (5) 
Which are, indeed, the time windows. Moreover, as it 
has been illustrated in Fig.(6), in the second approach, a 
matrix with the dimensions 417*8 has been obtained 
whose frequency and time axes have been divided into 
10 and 398 parts, respectively. 
Thereafter, at the next stage, the corresponding values of 
RMS for one of the column windows of Fig. (5), 
including the frequency range of [2000-3000], and also 
for one of the row windows of Fig. (6), containing the 
range of frequencies of [100-1200], have been calculated 
with the use of Eq.(8). Then, these calculated values 
have been divided by the value of RMS of the total 
signal. Moreover, the entropy energy has been calculated 
for the row window of Fig. (6), and the obtained results 
have be tabulated in Tables (3, 4, and 5), respectively. It 
should be pointed out that we have chosen these 
frequency ranges in view of their higher values of 
amplitudes.  
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(a) 

 
 

(b) 

 
Fig. 5.  STFT of the signal for two different faults at 2000 rpm speed 
and 1000N load (frequency resolutions are increased): (a) GBR, (b) 
BLD. 

 
 

(c) 

 

 
(d) 

 
Fig. 6.  STFT of the signal for two different faults at 2000 rpm speed 
and 1000N load (time resolutions are increased): (a) GBR, (b) BLD. 
 

 

Table 3.  The STFT energy root mean square for row window for three 
different faults at 2000 rpm speed and 1000N load 

GBR BLD ABR 

0.0023 0.0552 0.0139 

 

Table 4. The STFT energy root mean square for column window for 
three different faults at 2000 rpm speed and 1000N load. 

GBR BLD ABR 

0.0001 0.0022 0.015 

 

Table 5. The STFT energy entropy for three different faults and 1000N 
load.at 2000 rpm speed  

GBR BLD ABR 

0.1420 0.3390 0.3569 
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