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1. Introduction: 

In real-world cases transportation problems can 
be formulated as multi-objective transportation 
problems because the complexity of a social and 
economic environment requires explicit 
considerations of criteria other than cost. Examples of 
additional concerns include: average delivery time of 
commodities, reliability of transportation, 
accessibility to the user, product deterioration, and 
many others. Thus, multiple penalty criteria may exist 
concurrently, which leads to the research work on 
multi-objective transportation (MOT) problems. 

The multi-objective transportation problem is of 
great interest to many researchers and several local 
methods have been proposed to solve it [1, 2, 11, 12, 
14, 15, 18, 19]. 

Most of the methods which are used to solve 
(MOT) problem are local methods. By local method 
we mean that the method is designed to converge to 
optimal solution from closest starting point whether it 
is local or global one. For a local method, there is no 
guarantee that it converge if it starts from remote. 

In this paper we will use a trust-region 
globalization strategy to solve (MOT) problem. 
Globalizing strategy means modifying the local 
method in such a way that it is guaranteed to 
converge at all even if the starting point is far away 
from the solution. 

In this work, we convert the multi-objective 
transportation problem to a single-objective 
constrained optimization problem with equality and 
inequality constraints (SCOEI) problem, by using a 

weighting approach.  The weighting approach is 
considered as one of the most useful algorithms in 
treating multi-objective optimization problems to 
generate a wide set of optimal solutions (pareto set), 
for more detail see [17]. Here, an active set strategy is 
used to convert (SCOEI) problem to a single-
objective equality constrained optimization problem 
(SECO) problem and a multiplier method is used to 
convert (SECO) problem to unconstrained 
optimization problem. 

The trust-region strategy for solving (SCOEI) 
problem, (SECO) problem, and unconstrained 
optimization problem has proved to be very 
successful, both theoretically and practically [6-10] 

In this current study, the effect of changing 
weights on (MOT) problem was studied to show the 
degree of satisfaction of each objective. We also 
make a comparative study between our proposed 
algorithm and different approaches treated the multi-
objective transportation problem before. 

Subscripted functions denote function values at 

particular points; for example, 

1 1 1 1( ), ( ), ( , , ), ( , , )k k k k k k k k x k x k k kf f x f f x l l x l l x           

and so on. However, the arguments of the functions 
are not abbreviated when emphasizing the 
dependence of the functions on their arguments. The 

matrix kH denotes the Hessian of the Lagrangian 

function  ( , , )k k kl x    or an approximation to it. 

Finally, all norms are 2l  -norms. 
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This paper is organized as follows: In section two we 
introduce the mathematical form of multi-objective 
transportation problem and how (MOT) problem 
transform to unconstrained optimization problem. In 
section three we give a detailed discussion of the trust 
region algorithm for solving (MOT) problem. 
Furthermore, we then discuss in detail the two test 
problems with all their possible solutions in section 
four.  Finally, the conclusion is discussed in section 
five, and we come to acknowledgments in section six. 
2  Mathematical Formulation of (MOT) Problem. 

The mathematical model of (MOT) problem 
can be stated as follows: 
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where m  and n   stands for the number of sources 
and the number of destinations, respectively, and 

ˆ 1, 2,...,k p . Positive constants ib  are the 

amount of homogeneous product for 
thi origin which 

are transported to n   destinations. Positive constants  

jc  represent the demand of homogeneous product 

for the  
thj  destination. Positive constants  

k̂
ija represent the coefficients of the ˆ thk   objective 

functions which are associated with transportation of 

unit of the product from source i  to destination j . 

Variables ijx  are the unknown quantity to be 

transported from origin i to destination j . 

The first set of constraints 
1

n

ij i
j

x b


  

stipulates that the sum of shipments from the source 
must equal its supply and the second set of constraints 

1

m

ij i
i

x c


  requires that the sum of the shipments 

to the destination must satisfy its demand. Since the 
total supply is equal to total demand, this formulation 
is called a balanced transportation problem. In this 
paper, we study the case of balanced transportation 
problem because the unbalanced transportation 
problem can be converted to balanced transportation 
problem after including a dummy origin or a dummy 
destination. 

Definition 2.1 :(Nondominated solution). A feasible 

vector 
0x in a feasible region S , yields a 

nondominated solution of (MOT) problem, iff there is 
no other vector  

such that  x S   

垐 0

1 1 1 1
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For more detail see [16]. 

Definition 2.2:(Efficient Solution). A point 
0x S  

is efficient, iff there does not exist another  x S  
such that 

垐 0

1 1 1 1

垐 0

1 1 1 1

ˆ 1,2,..., ,

ˆ.

m n m n
k k

ij ij ij ij
i j i j

m n m n
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a x a x forsomek

   

   

  



 

 

Otherwise 
0x   is an inefficient solution. For 

example, the point 
0x S  is efficient if its criterion 

vector is not dominated by the criterion vector of 

another point in the feasible region S . In this paper 
we will  use  efficient solution. [17]. 
Definition 2.3:(Compromise Solution). A feasible 

vector x S    is called 
  a compromise solution of (MOT) problem iff 

x E   and ( ) min{ ( ) }f x f x x S      

where E is the set of efficient solutions. [13]. 
From the above definition a compromise solution 
must meet two conditions 
 The solution should be  efficient. 1-     

2-  The feasible solution vector x 
  should have the 

minimum deviation from the ideal point than any 

other point in S . 

The compromise solution which maximizes 
the underlying utility function is the closest one to the 
ideal solution. While knowledge of the set of efficient 

solutions  E  is not always necessary in real world 
cases, the decision maker's preferences should be 
considered in the determination of the final 
compromise solution. 
Definition 2.4:(Preferred Compromise Solution). 
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The solution is called the preferred 
compromise solution if the compromise solution 
satisfies the decision maker's preferences. 

By using the weighting approach, the multi-
objective optimization problem (2.1) is converted to 
the following single-objective constrained 
optimization problem with equality and inequality 
constraints (SCOEI) problem. 

垐
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where 
ˆ

ˆ 1

1
p

k

k

w


   and 
ˆ ˆ0 .kw for all k  

The above problem can be written as follows: 

min ( )

( ) 0, (2.3)

( ) 0,

imize f x

subject to y x

z x




 

1, 2,..., .j n  , ( ) [ ]Tijz x x ,  1, 2,...,i m , 

and      where 
1 1

( ) [ , ]
n n

T
ij i ij j

j j

y x x b x c
 

     

The functions  
( ) : , ( ) : , ( ) :n m n m n m n m n mf x y x and z x      � � � � � �

are twice continuously differentiable. 
The Lagrangian function associated with problem 
(2.3) is the function 

( , , ) ( ) ( ) ( ), (2.4)T Tl x f x y x z x    

where 
n m �  and

n m �    are the Lagrange 

multiplier vectors associated with equality and 
inequality constraints, respectively. 
Following  [6], we define a 0-1 diagonal indicator 

matrix 
( ) ( )( ) ,n m n mU x   �  

 whose diagonal entries are 
1 ( ) 0,

0 ( ) 0,
( ) (2.5){

e

e

if z x

e if z x
u x






where 1, 2,..., .e m n   

Using the above matrix, we transform problem (2.3) 
to the following equality constrained optimization 
problem 

min ( )

( ) 0, (2.6)

1
( ) ( ) ( ) 0.

2
T

imize f x

subject to y x

z x U x z x





U

sing a multiplier method, we transform the equality 
constrained optimization problem (2.6) to the 
following unconstrained optimization problem 

2 2
min ( , , ; ; ) ( , , ) ( ) ( ) ( )

2 2

, (2.7)n m

s r
imize x s r l x U x z x y x

subjectto x

 


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�

 

where s  is the positive parameter and 0r   is a 
parameter usually called the penalty parameter. 
A detailed description of the main steps of the trust-
region algorithm for solving the above problem and 
it's an algorithmic framework is presented in the 
following section. 
3. Trust Region Algorithm Outline 
This section is devoted to presenting the detailed 
description of the trust-region algorithm for solving 
problem (2.7). 
3.1. Computing a Trial Step  

We compute the trial step kd  by solving the 

following trust-region sub problem 

2 2

min ( ) ,
2 2

, (3.1)

T T Tk k
k x k k k k k k

k

s r
imize l l d U z z d y y d

subjectto d 

    



 

where kH  is the Hessian matrix of the Lagrangian 

function ( , , )k k kl x   or an approximation to 

it. Since our convergence theory is based on the 
fraction of Cauchy decrease condition, therefore a 
dogleg method can be used to compute the trial step. 
[5].  

3.2. Testing the Step and Updating k  

To test the step, estimates for the two Lagrange 

multipliers 1k   and 1k   are needed. Our way of 

evaluating the two Lagrange multipliers 1k    and 

1k    is presented in Step 5 of Algorithm (3.1) 

below. 
To test whether the point 

1 1( , , )k k k kx d      will be taken as a 

next iterate, an actual reduction and a predicted 
reduction are needed and defined as follows: 
The actual reduction in the merit function is defined 
as 
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where 1( )k k k      and   

1( )k k k     . 

 The predicted reduction in the merit function is 
defined to be  

22
Pr (0) ( ) ( ) [ ], (3.3)

2
T T T Tk

k k k k k k k k k k k k k k k

r
ed q q d y y d U z y y y d        

where 
21

( ) ( ) . (3.4)
2 2

T T Tk
k k x k k k k k

s
q d l l d d H d U z z d    

After computing a trial step and updating the 
Lagrange multipliers, the penalty parameter is 

updated to ensure that Pr 0ked  . To update kr , 

we use a scheme that has  the flavor of the scheme 
Proposed by El-Alem [7] . This scheme is described 
in Step 6 of Algorithm (3.1) below. After that, the 
step is tested to know whether it is accepted. This is 

done by comparing Pr ked   against r .kA ed  

If  1
Pr

k

k

Ared

ed
  where  1 (0,1)   is a small fixed 

constant, then the step is rejected. In this case, the 

radius of the trust region k  is decreased by setting 

1k kd   , where 1 (0,1)     and another trial 

step is computed using the new trust-region radius. If  

1
Pr

k

k

Ared

ed
  then the step is accepted. 

Our way of evaluating the trial steps and updating the 
trust-region radius is presented in Step 7 of Algorithm 
(3.1) below. After accepting the step, we update the 

parameter ks  and the Hessian matrix kH . To update 

ks   , we use a scheme suggested by Yuan [20]. 

This scheme is described in Step 8 of Algorithm (3.1) 
below. 
Finally, the algorithm is terminated when either 

1kd   or 

2 1 2, , 0.x k k k k kl z U z y for some       

 
3.3. Main Algorithm     
A formal description of the trust-region algorithm for 
solving problem (2.7) is presented in the following 
algorithm. 
Algorithm 3.1. (The Main Algorithm) 
Step 0. (Initialization) 

     Given 1
n mx � . Compute 1U . Evaluate 1  

and 1  (see Step 5 with 0k   and  

     0 (0,0,...,0)T   ). Set 1 1s  , 0 1r  , 1 1   

, and  0.1  . Choose 
8

1 2 10    , 

    1 0.05  , 2 2  , 
4

1 10  , and 2 0.5   

such that 1 0  , 2 0  , 1 20 1    ,     and 

1 20 1    . Set 
3

min 10   

and
5

max 110   such that min 1 max    . 

    Set 1k  .                  
Step 1. (Test for convergence) 
         then terminate the algorithm.      

2 ,x k k k k kl z U z y       If       

Step 2. (Compute a trial step) 

a) Compute the step kd  by solving  (3.1)(      

  b) Set  1 .k k kx x d   (      

Step 3. (Test for termination) 

   If  1kd  , then terminate the algorithm.            

Step 4. (Update the active set) 

   Compute 1kU  .                

Step 5. (Compute the Lagrange multipliers 1k   

and 1k    ) 

  a) Compute 1k   by solving(          

        
2

1 1 1 1

1

min

0,

k k k k k

k

imize f y z U

subject to U

 



   



  


 

      and set the rest of the components of 1k    to 

zero .         

 1 .k k    then set  

1 1 1 1 1 1,k k k k k kf y z U               

(b) If  

           Else, compute  1k  by solving  

2

1 1 1 1 1min .k k k k kimize f y z U       

 
                        End if. 

Step 6. (Update the penalty parameter kr ) 

     If  
22

Pr [ ],
4

Tk
k k k k k

r
ed y y y d     

then set 
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T T T
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y y y d

 
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           End if.      
Step 7. (Test the step and update the trust-region 
radius) 

       If  1.
Pr

k

k

Ared

ed
                

                      Reduce the trust-region radius by 

setting  1k kd   and go to step 2  

accept the step 1 .k k kx x d     Else if  

1 2 ,
Pr

k

k

Ared

ed
     then         

               Set the trust-region radius: 

1 minmax( , ).k k             

    Else, accept the step: 1 .k k kx x d        

              Set  the trust-region radius:  

1 max min 2min{ ,max{ , }}.k k              

        End if                 

Step 8. (To update the parameters ks  and k ) 

        (a) Set  1k ks s   and   1 .k k       

        (b) Compute 

r (0) ( ) ( ) .T T T
k k k k k k k k k k kTp ed q q d y y d U z       

       (c) If  

r min{ , },k k k k k k k k kTp ed z U z z U z     

then set   1 2k ks s    and  1

1
.

2
k k                

End if.           

Step 9. Set  1k k   and go to Step 1 
In the following section, we introduce two multi-
objective transportation test problems to obvious the 
goal of our paper. 
4. Multi-objective Transportation Test Problems 
 In this section, we introduce two test problems for 
the multi-objective transportation optimization 
problem. The proposed algorithm was implemented 
on 2.7 MHZ PC using MATLAB 7 to confirm the 
effectiveness of the algorithm. The two multi-
objective transportation optimization test problems 
are presented in the following subsections. 
4.1. Multi-objective Transportation Test Problem 1 
Let us consider the following numerical example 
presented by  many [1-4, 16, 21] 
 to illustrate the application of the proposed 
algorithm. The problem has the following 
characteristics: 

supplies: 1 8b  , 2 19b  , and 3 17.b     

demands: 1 11c  , 2 3c  , 3 14c  ,  and  4 16.c   

penalties:      
1

1 2 7 7

1 9 3 4

8 9 4 6

a

 
 

  
 
 

      and    

   
2

4 4 3 4

5 8 9 10 .

6 2 5 1

a

 
 

  
 
 

    

This problem could be written as follows: 

1 11 12 13 14

21 22 23 24

31 32 33 34

2 11 12 13 14

21 22 23 24

31 32 33 34

11 12 13 14

21 22 23 24

31 32 33 3

min 2 7 7

9 3 4

8 9 4 6 ,

min 4 4 3 4

5 8 9 10

6 2 5 ,

8,

19,

imize f x x x x

x x x x

x x x x

imize f x x x x

x x x x

x x x x

subject to x x x x

x x x x

x x x x

   

   

   

   

   

   

   

   

   4

11 21 31

12 22 32

13 23 33

14 24 34

17,

11,

3,

14,

16,

0, 1,2,3, 1,2,3,4.ij

x x x

x x x

x x x

x x x

x i j



  

  

  

  

   

4.2.1Results and Discussions of (MOT) Test Problem  
A weighting approach is used together with the trust-
region algorithm (3.1) to solve the above problem at 
several values of weighting values based on  

 1 0,0.1,...,1w  and   2 1,0.9,...,0 .w   By 

discussing the effect of changing weights on the two 

objective functions 1f  and  2f , we note from Figure 

(1) that the best value of  
1w   is 0.4 and  

2w  is 0.6, 

which give  1 173f   and  2 173f   as the best 

compromise solution. 
To evaluate the performance of the suggested 
approach we show a schematic comparison in table 
(1)  between our results and the results of researchers 
who have used other approaches ( Interactive 
approach [16], Fuzzy approach [1], Fuzzy approach 
[4] and IFGP approach [2]). It becomes evident from 

the table that the value of 2 173f   is the best result, 
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whereas the value of 1 173f  , while still 

acceptable, is not the best 
Table 1. Comparison between different approaches. 

. 2f
 1f

 
The name of approach 

174 186 Interactive approach [16] 
190 170 Fuzzy approach [1] 
195 160 Fuzzy approach [4] 
185 168 IFGP approach [2] 
173 173 Proposed approach 

 
4.3. Multi-objective Transportation Test Problem 2 
Let us consider the following numerical example 
presented by Aneja and Nair[3] ; Ringuest and Rinks 
[16] to illustrate the goal of our paper. The problem 
has the following characteristics 

supplies: 1 5b  , 2 4b  ,  3 2b  , and   4 9.b   

demands: 1 4c  , 2 4c  , 3 6c  , 4 2c  , and 

5 4.c         

penalties:      
1

9 12 9 6 9

7 3 7 7 5
,

6 5 9 11 3

6 8 11 2 2

a

 
 
 
 
 
 

   

    
2

2 9 8 1 4

1 9 9 5 2

8 1 8 4 5

2 8 6 9 8

a

 
 
 
 
 
 

    

and  

3

2 4 6 3 6

4 8 4 9 2
.

5 3 5 3 6

6 9 6 3 1

a

 
 
 
 
 
 

 

This problem could be written as follows: 

1 11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45,

2 11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

4

min 9 12 9 6 9

7 3 7 7 5

6 5 9 11 3

6 8 11 2 2

min 2 9 8 4

9 9 5 2

8 8 4 5

2

imize f x x x x x

x x x x x

x x x x x

x x x x x

imize f x x x x x

x x x x x

x x x x x

x

    

    

    

    

    

    

    

 1 42 43 44 45,

3 11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45,

11 12 13 14 15

21 22 23 24 25

31 32 33 34

8 6 9 8

min 2 4 6 3 6

4 8 4 9 2

5 3 5 3 6

6 9 6 3

5,

4,

x x x x

imize f x x x x x

x x x x x

x x x x x

x x x x x

subject to x x x x x

x x x x x

x x x x

   

    

    

    

    

    

    

   35

41 42 43 44 45

11 21 31 41

12 22 32 42

13 23 33 43

14 24 34 44

15 25 35 45

2,

9,

4,

4,

6,

2,

4,

0, 1,2,3,4, 1,2,3,4,5.ij

x

x x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x i j

 

    

   

   

   

   

   

   

 

4.4.2 Results and Discussions of (MOT) Test 
Problem  
Similar to the (MOT) test problem 1, the weighting 
approach is used together with the trust-region 
algorithm (3.1) to solve the above problem and 
discuss the effects of changing weights on it. As one 
weight is changed linearly in each case, the other two 
weights are generated randomly, such that    

3
ˆ

ˆ 1

1k

k

w


   and 
ˆ

0kw   for all ˆ 1,2,3.k   The 

values of the weights which are used for three cases 
are illustrated in three tables (2-4). 
Figures (2-4), show the objective functions obtained 
from six solutions corresponding to the six weights 
compared to the weights for three cases. We observe 

that the best compromise solutions are    1 144f  , 

2 104f  , and  3 73f   which are occur at   

1 2 3 0.6.w w w    
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When we compare the  results of our suggested 
approach and the results of researchers  (Interactive 
approach [2] and Fuzzy approach [1]) who have used 
other approaches it becomes evident from table (5)  

that the value of  3 73f   is the best result, the value 

of 2 104f   is in agreement with the value obtained 

by using the Interactive approach [2] and better than 
the result of Fuzzy approach [1], whereas the value of  

1 144f  , is comparatively higher than the results 

obtained by other approaches. 

Table 2. Different weights (
1w is changed linearly)      

3w  
2w  

1w  
Run 

0.4279 0.5721 0.0000 1 
0.1795 0.6205 0.2000 2 
0.3882 0.2118 0.4000 3 

0.2364 0.1636 0.6000 4 
0.0241 0.1759 0.8000 5 
0.0000 0.0000 1.0000 6 

 

Table 3. Different weights (
2w is changed linearly)          

 
3w  

2w  
1w  

Run 

0.3972 0.0000 0.6028 1 
0.2324 0.2000 0.5676 2 
0.1427 0.4000 0.4573 3 

0.1282 0.6000 0.2718 4 
0.0532 0.8000 0.1468 5 
0.0000 1.0000 0.0000 6 

 

Table 4. Different weights (
3w is changed linearly) 

3w  
2w  

1w  
Run 

0.0000 0.2523 0.7477 1 
0.2000 0.2006 0.5994 2 
0.4000 0.1424 0.4576 3 

0.6000 0.2646 0.1354 4 
0.8000 0.0924 0.1076 5 
1.0000 0.0000 0.0000 6 

 
 
 
Table 5.Comparison between different approaches.     

3f
 2f

 1f
 

The name of 
approach 

80 106 112 Fuzzy approach [1] 

76 104 127 Interactive approach 
[2] 

73 104 144 Proposed approach 
 
5.  Conclusions 

In the present work we propose a new approach 
by using the trust-region globalization strategy to 
solve a multi-objective transportation (MOT) 
problem, which is interested to many  researchers and 
several local methods have been proposed to solve it. 
Globalizing strategy means modifying the local 
method in such a way that it is guaranteed to 
converge at all even if the starting point is far away 
from the solution. The trust-region strategy for 
solving (SECOP) and unconstrained optimization 
problem has proved to be very successful, both 
theoretically and practically. 

A weighting approach is used together with  an 
active set strategy and a multiplier method to 
transform (MOT) problem to unconstrained 
optimization problem and we used a trust-region 
algorithm to solve it. 

We have arrived at the conclusion that this new 
numerical technique has shown itself to be suitable 
for the numerical and parametric study of (MOT) 
problem after having been tested in the work with two 
test problems. Also, this approach  consider as 
interactive approach, because it allows the decision 
maker to specify the weights of the criterion 
importance which show the degree to which the 
objectives have been satisfied. Finally, the success of 
our approach on most of the test problems not only 
provides confidence, but also stresses the importance 
of numerical parametric studies to investigate the best 
weighting values of each objective function which 
leads directly to the best compromise solution in 
solving multi-objective transportation problems. 
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