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1 Introduction

Suppose that the network is described by a condiecte
directed graple(V,E), whereV = {1,2, ...,n}is the
node set and = {e = (i, h):i,h € V} is the edge set.
The nodes are assumed to be perfectly reliable.
Associated with each edgec E are two attributes.
The first attribute is the edge cast. The second
attribute is the probabilitp <p;; <1, that when
attempting to traverse eddéj) it is found in an
operational state. The reliability measures the
probability that the edge will be operational. The
reliability of a directed path is de.ned as thedpici

of the reliability of edges in the pa[h e, R(P) =
[1¢i j)er pij]- We assume that this probability does not
change over time.

Let s andt be two given and distinguished nodes
of G(V,E). A pathP fromstot in G (V,E) or simply
path is a sequence of non-repeated nodes and
connecting arcs, joining the initial nodeto the
terminal nodet . We consider the problem of
determination of a directed pahfrom a source node

s to a destination nodefor which

2(i,j)ep Cij
i jer pij

is minimum among all such paths. We refer to this
problem as the Minimum Cost -Reliability Ratio Path
Problem (MCRRPP) [1].

Ahuja [1] observed that the optimum solution of the
MCRRPP is an efficient extreme solution of the
bicriterion path problem. He employed the parametri
programming to enumerate these efficient extreme
solutions and a sufficiency condition is used t¢ cu
down the enumeration substantially. The algoritem i
shown to be pseudo-polynomial. Chandrasekaran [6]
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provided a polynomial bounded algorithm to solve
minimal ratio spanning trees. Chandrasekaran ¢fal.
presented a polynomial algorithm consisting of an
indirect search in the set of efficient extremengmi
for computing the solution to the cost-reliabiliigtio
spanning tree problem. Aneja and Nair [3] considere
a finite serial multistage system where the meastire
effectiveness of the system is a ratio of two metur
functions. The numerator of the ratio is an additiv
return function whereas the denominator is a
multiplicative one. They considered two-criterion
dynamic program and showed that the optimal
solution of the ratio dynamic program is a non-
dominated solution of the two criteria program.
Martins [12] presented a polynomial algorithm to
determine a path between a specified pair of nodes,
which minimizes the cost/capacity ratio.

This paper is organized as follows. Section 2 prisse
concepts, definitions and problem properties. In
Section 3, we present an algorithm to solve MCRRPP.
A numerical example is presented in Section 4. In
Section 5 we conclude with some comments.

2 The problem and Properties

Let @ be the set of all directed pathsd@V, E) from

the sources to the destinatiom. For eachP € @
define
C(P) = Z Cyj
(i,j)ep
R =[[ry @
(i,j)ep
DPY= D dy
(i,j)ep
Where, dl] = —lnpij , 0< p’-] <1 then dl] >0 y

¥(i, ) € E andR(P) = [ jep py = €~ “CPer % for
all P € @ which means that (P) = e 2P,
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Now the problem we consider is

cP) ()
Associated with (2), we define the biobjective
shortest path (BSP) problem as follows:

min z(P) =

min[C(P), D(P)] 3)
and
min[C(P), —R(P)] (4
The mathematical programming formulation of the
BSP (3) is
{f1(x) = Z CijXij
min F(x) = ! Gper 5)
lfz(x) = Z dijxij
(i.j)ep
s.t.
1 ifi=s
xij— Z inz 0 l:fl'is,t
{j: CeE {j: GDeE} -1 ifi=t

xij € {0, 1},V(l,]) EE
wheres is the designated source node ard the
designated terminal node. L&t be the set of all
feasible solutions to (5) and it is also called the
feasible set in the decision space. So, the proigm
can be stated as follows:
min F (x) = (f1(x), f2(x)) (6)
s.t. x€eX
Now, we introduce general definitions and a
classification of efficient solutions. We will faw
the terminology of Raith and Ehrgott [24], Eusébio
and Figueira [13], Raith and Ehrgott [25], and
Hamacher et al. [18].

Definition 1 A feasible solution¥ € X is called
efficient if there does not exist anmye X with

(f1(x)'f1(x)) < (f1(97)'f2(37)) and (f1(x)'f2(x)) *
(fL®), £,(®)). Otherwisex is inefficient.

Let C bep x n criterion matrix whose rows are thg
the composite objective function is writtéhCx. The
following theorem shows that the set of efficient
solutions in X can be obtained by solving a
parametric problem.

Theorem 1 x € X is efficient if and only if there

exists
14
/16.(2={/16Rp:2i >0,Z/1i - 1}

i=1
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such thatx minimizes the weighted-sum linear
programming problemmin{A" Cx: x € X} (see [13]
and [29], p.215).

Efficiency is defined in the decision space. Thera
natural counterpart in the objective space. The
objective space is denoted Byand is given by

Y = {F(x) € R%:F(x) = (i(x), fo(x)), x € X}

Definition 2 F(x) € Y is a non-dominated (ND) point
if and only ifx is an efficient solution to (6).
OtherwiseF (x) is a dominated point.

Let Xz < X be the set of all efficient solutions of the
BSP (6) and’ypcY be the set of all ND objective
points. We distinguish two different types of ND
objective points, supported and non-supported ND
objective points. Let

Y2 = conv(Yyp) + R?

whereconv is the convex hull operator aRf =
{y € RP:y = 0} is the Pareto cone andnv(Yyp) +
R ={yeRP:y=y"+y",y € conv(Yyp),y" €
RP} . The non-dominated frontier &fis defined as
the set [see Ehrgott [22] and Hamacher et al. [18]]

{y € conv(Yyp): conv(Yyp) N (y + (—Rg)) = {y}}

Definition 3 (Supported ND solutioffsy ). Let y
denote an ND objective solution. Thenyibelongs

to the efficient frontier of’, y is a supported ND
objective solution. Otherwisey belongs to the
interior of Y= and it is a non-supported ND objective
solution.

The efficient frontier is piecewise linear and cerv

Its breakpoints are the extreme ND objective points
which are images of extreme efficient solutionshia
decision space.

Definition 4 (Extreme supported ND solutidRgy).
Lety € Ysy. Then,y is an extreme supported solution

if it is an extreme point df*. Otherwisey is a non-
extreme supported solution.

All supported ND objective points are located oa th
“lower-left boundary” ofconv(Yyp), i.e. they are ND
points ofY. The supported and the non-supported
efficient solutions are defined to be the inverse
images of the supported and the non-supported of ND
objective points. They can be distinguished a®¥adl:

e Supported efficient solutions are those

efficient solutions that can be obtained as
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optimal solutions to a (single objective)
weighted sum problem

min 2f,() + 1= DL (D)
for somel > 0. The set of all supported
efficient solutions is denoted B, its non-
dominated image i&.

e Supported efficient solutions which define
an extreme point of* are called extreme
supported efficient solutions and is denoted
by Xxse-

e The remaining efficient solutions Ky g: =
Xz\Xsp are called non-supported efficient
solutions. They cannot be obtained as
solutions of a weighted sum problem as their
images lie in the interior df*>. The set of
non-supported non-dominated points is
denoted byyyy . Note that this definition
implies Yyy cint(conv(Yyp) + RY). There
is no known characterization of non-
supported efficient solutions that leads to a
polynomial time algorithm for their
computation.

The two objective functiong, andf, do generally
not attain their individual optima for the sameuesd
of X. We will assume in the following that there exists
no ¥ such thatt € argmin{f;} andx € argmin{f,}

for a problem of the form (5).

The solution of the BSP contain both non-supported
and supported non-dominated vectors / efficient

A

F (Xex(z2))

f2(x)

solutions, which can be geometrically characterized
as follows: the non-supported non-dominated vectors
are located inside the feasible region in the dhjec
space, while the supported vectors are found on the
boundaries of the convex hull of this feasible oagi
Supported non-dominated vectors correspond to the
optimal solutions of a sequence of single objective
parametric network flow problems.

All the previous terminology can be summarized in

Table 1.

Table 1: Classification of efficient and non-domigdh in
the decision and objective spaces

Decision Space

Objective Space

X: set of all feasible
solutions

Y = F(X): image of X
under the objective function
(objective spact

Xg: set of all efficient
solutions

Yyp: set of all non-
dominated objective
solution

Xsp < Xg: set of all
supported efficient
solutions

},SNDQYND: set of all
supported non-dominated
objective solutions

Xysg < Xsg: set of all
extreme supported efficien
solutions

Yysnp < Ysnp: set of all

t extreme supported non-

dominated objective
solutions

XNE: = XE\XSE: set Of a“
non-supported efficient
solutions

YNNDQYND\}ISND: set of all
non-supported non-
dominated objective
solutions

® Supported ND

A Non-Supported ND

F(xlex(z,l))

Figure 1: All non-dominated pointsin the objective space
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Theorem 2 An optimal solutionP* of the MCRRPP
maps into a supported extreme non-dominated point
of conv(Y).
Proof As we mentioned abov®(P) = e~2®); |t
easy to see that the optimal solut®nof the
MCRRPP maps into a non-dominated objective point
of (3). Otherwise, leP such that(P) < C(P*) and
D(P) < D(P*) with strict inequality holding at least
at one of these two places. This implies

c(P) ¢

e~D(P) ~ g-D(P7)
sinceC = 0. That is

c(P) - c(PY

R(P) R(P)
which contradict the optimality af*.
Suppose thal* maps inty* € conv(Y) + R2. We
want to show thag* is an extreme point 6f=.
Suppose the contrary; is not an extreme point
of Y2. Then there exist two extreme poipfsandy?
(corresponding to two efficient extreme paitis
andP?), suchthay* = ay' + (1 —a)y%40< a < 1,
where
yt= (C(P1),D(P1))
y*= (C(Pz)'D(Pz))
and
y* = (C(P),D(P)
Assume that
cr) __C@) _
R UTRE)

Now,
D(P*) =aD(Py) + (1 — a)D(P,)
and by convexity oé~*, we have
e~ PP = o—(aD(P)+(A-0)D(Py))

< ae PP 4 (1 - a)eP®)

= aLPl)+ 1-a) )
m m;
_aC(P) + (1 - )C(P)] (P
- my B my
That is,}ig:g > my, contradicting the optimality of
P'm

The problem, thus, reduces to searching through
shortest paths which correspond to non-dominated
extreme points of the sBE in the biobjective space.

Definition 5 A functionf: Sc R — R is unimodal on
an intervalS if there exists a* €S at whichf
attains a minimum angd is nondecreasing on the
interval {x € S:x = x*} whereas it is nonincreasing
on the interva{x € S:x < x*}.

It is well known that the efficient frontier obta&id by
joining the points,_, to P, for allk = 2,...,w, is a
piecewise linear convex function and typically s o
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the form as shown in Fig. 1. L&, P,, ..., B, be the
set of all ND extreme points of (3) in the increasi
order of theirD(P;) value. LetC,,;, = C(P,) and
Cmax = C(Py). Further, let.,, denote the line passing
throughP,_, andP,. The equation of, is given

_ D(Pg)-D(Pg-1)
where b = -ctr
anda, = D(P,) + b, C(P,). For any poinf(x,y) €
L, defineh, (x) = xe¥ = xe%* Pk*_ |t is easy to see
thath, (x) is a unimodular function and achieves its

. N 1
maximum atc® = —.
by

Letx; = C(P),Vi=1,2,..,w. Further, let
ze = min {z(P)}
<i<

by y=a,—bx |,

andP* be the path for which this minimum is
attained.

Theorem 3 If hy(Cpin) = zg, thenP” is an optimum
solution of the MCRRPP.

Proof Since the efficient frontier is piecewise linear
and convey, it follows that, — b,x; < D(P;),Vi =
k+1,k+2,..,1 then

e (x;) = x;e% Pk < C(P)ePPD = z(P),V i
=k+1,..,1
Since the function, (x) achieves its maximum

1 . .
atx = P SO we consider two cases, the first case
k

whenx;, < bi and by the nature of the function
k

hy (x)
Zg < hy(Crin) < hie(xp) < 2(Py),
Vi=k+1,k+2,....m

The second case whep > bi let %, be such that
k
hy (x) = hye (%)

Zg < h(Crin) < My () < hye(xy),
ka < X < X
and the proof is complem

The paths are enumerated in the oRjgP,,_4, ..., P;

by the parametric analysis which we are going to
explain in Section 4. We can use the following
condition as a termination condition. LBt be the
minimum of Z* = min,;.,,{z(P,)}.
Theorem 4 If hy 1(Cpax) = 25, thenP* is an
optimum solution of the MCRRPP

Proof The proof is similar to the previous Theorem
[ ]

2.1 A different measurefor reliability
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In this section we are presenting different measure
for the reliability of a pat®(P) =[] j)eppij- We
assume that this probability does not change over
time. Although there are no limitations regardihg t
number of edges that can be in a failed state, we
assume that failures occur independently and they a
unrecoverable. Reliability of a path refers to the
probability of traversalj.e., the probability that all
edges along the path are operational. We model the
operational probability of an edge as an exponkntia
function of physical distance. A realistic assurmpti
regardingp;; is that failures that prohibit the use of
the edge for traversal are generated according to a
Poisson process with constant rdtg, (i,j) € £,
modeling p;; as an exponential function of the
physical distance. The failure ratg represents the
average number of failures per unit length. We
represent the relationship between edge lengths,
operational probability and failure rate, using the
exponential model introduced by Melachrinoudis and
Helander [19], ap;; = e "%,

Suppose we know for each eddg) € E its failure

rate 4;; and distanced;; The operational
probabilities are calculated by using the expoménti
model p;; = e %% . We use the logarithmic
transformation between operational probability and
edge length, which was proposed by Melachrinoudis
and Helander [19], to calculate for each edge
(i,j) €E the “artificial” edge length df} =
—Inp;; = 4;;d;; and to define a new network
G(V,E) with the same sets of edge attributes costs,
c;j and operational probabilitieg;; = e‘dﬁ' but its
edge distances ard{‘j, (i,j) eE . Due to the
logarithmic transformation, the most reliable route
between nodesandj onG(V, E) is the shortest path
between nodesandj onG (V, E).

Let @ be the set of all directed paths@(V, E). For
eachP € @ define

C(P) = C,:j
@i.j)ep

Table 2: Classification of BSP algorithms and references

R(P) = 1_[ pij

@L,j)ep
GEDY

(L,j)ep
where, df; = —Inp;; , 0<p;; <1 thendfi >0,
v(i,j) €E and R(P) =TIl jperpij = e~ Zperd]
for all P € @ which means that(P) = e 0P,
Now, the problem we consider is

c(P)

man(P) = ﬁ

PeED

®)

Associated with (8) we define the following
biobjective shortest path (BSP) problem

min[C(P),D(P)] (9
and
rl)réig[C(P), —-R(P)]

Theorem 5 An optimal solutionP* of the problem (8)
maps into a supported extreme non-dominated point
of (9).

Proof Similar to Theorem 1

Theorem 6 If all edge failure rates are equal, the
optimal solutionP* of (2) is the same as the optimal
solution of (8)

Proof Let;; = 4, V(i,j) € E. The networlG (V, E)
has the same topology ¢V, E) and its edge
lengths have been scaled/by.e.,dg“j = Ad;;. LetP~
be the optimal solution of the
problemminp,z(P) = %. SinceD(P) =

Z(i,j)EP dﬁ = Z(i,j)EP ﬂydU = ﬂD(P), hence,

. c(P)
. c(p) . c(P) _ Cc(P)
MiNpeo——5py = MiNpew 5505 = mlnpequ ,
which proves thaP* is also the optimal solution of
cP)

mlnpe@ﬁ | |

Two Phase Method Path/tree

Mote et al. [16]

Biobjective Label Correcting

Node-selection

Skrimed Andersen [27],
Brumbaugh-Smith and Shier [4]

Biobjective Label Setting

Label-selection

Hansed] [1

Kth Shortest Pa Ranking

Climaco and Martins [!

Near Shortest Path Ranking

Carlyle and Wood [5]

3 Solution M ethod
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3.1 A brief review of solution methods for the BSP
problem

In this section we give a brief review of different
methods to solve BSP exactly. Three main
approaches are considered. The two phase method,
the biobjective labeling methods, and ranking
methods. Climaco and Matrtin [8] and Mote et al][16
fall in the path/tree handling procedure. Hansej,[1
Brumbaugh-Smith and Shier [4] and Skriver and
Andersen [27] fall in the labeling procedure.

In table 2 the references that fall in the main
approaches to solve BSP are listed.

Our review is based on Skriver [26] and Raith and
Ehrgott [25]

1) Two phase method

In the existing literature all algorithms, except
perhaps the Parametric Approach by Mote et al.
[16], have been proven slower than the Label
Correcting approach [27]. In phase I, all the
extreme supported efficient solutions (efficient
solutions which define extreme points of the
convex hull of the set of feasible objective
vectors) are computed. In the second phase the
remaining efficient solutions are computed with
one of the enumerative approaches mentioned
before. The enumerative methods can be
employed in a very effective way as enumeration
can be restricted to small areas of the objective
space [see [25]].

Biobjective label correcting

Label correcting differs in whether they employ
label-selection or node-selection. Skriver and
Andersen [27] have claimed that the node-
selection algorithms outperform the path/tree
algorithms (two phase method) because the
number of non-dominated values is always
smaller than (or equal to) the number of efficient
paths. A stronger argument is that the node-
labeling algorithm only finds the list of non-
dominated values at the terminal node, and not
the actual efficient paths.

Biobjective label setting

Biobjective label setting approaches always
employ label-selection. In particular, a
lexicographically smallest label with respect to
all nodes is selected among all tentative labels in
each iteration. Guerriero and Musmanno [9]
investigated label correcting and label setting
methods for the multicriteria shortest path tree
problem. There are problem instances where
label-selection is superior and others where
node-selection is superior. Furthermore, label
setting is superior for some instances, and label
correcting is superior for others.

Ranking methods

2)

3)

4)

http://www.lifesciencesite.com

Starting with the optimal value for one objective,
the second-best solution, the third-best solution,
etc. is obtained until thek-best solution is
reached. For BSP, the process continues until it
is guaranteed that all non-dominated points have
been foundKth shortest path methods have been
found not to be competitive with label correcting
methods. On the basis of computational tests,
Carlyle and Wood [5] conclude that their near
shortest path routine solves the k-shortest path
problem faster than other algorithms dedicated to
solving the k-shortest path problem [25].

A label correcting algorithm with node-selection is
identified as the most successful approach to solve
BSP problems by Skriver and Andersen [27] and
label setting as in Guerriero and Musmanno [9].
Raith and Ehrgott [25] conclude that two phase
method is competitive with other commonly applied
approaches to solve the BSP problem. The two phase
method works well with both a ranking, a label
correcting, and a label setting approach in phase 2
but the label correcting and setting approachegsapp
to be preferable as they are more stable. The ypurel
enumerative near shortest path approach is a very
successful approach to solve some problem instances
but the run-time on others is very long.

Skriver and Andersen [27] argued that the parametri
approach is slower, due to the structure of the
algorithm. The approach is to use the weighting
method to find the efficient extreme paths, anchthe
use backtracking of spanning trees to search far no
extreme efficient paths. The weighting method means
solving LP problems, but for the shortest-path
problem that is done by Dijkstra’s shortest-path
algorithm (or a similar algorithm). It turns outath
Dijkstra’s algorithm is actually a slower approdnoh
practice than the Label correcting routine. On ¢ép
this comes the fact, that the weighting methodhef t
parametric approach by far is faster than the
backtracking part. When we are backtracking, we
might have to evaluate all the edges in all the
spanning trees in the worst case, resulting in an
exponentially growing number of comparisons.

We are going to use in this paper phase | in the tw
phase method. The backtracking part which makes
the two phase method slower than the labeling
algorithms will not be used here. Since the non-
extreme efficient paths need not be generated.
Skriver and Andersen [27] presented a label
correcting algorithm for solving the BSP. They
imposed some simple domination conditions, which
reduced the number of iterations needed to find all
the efficient (Pareto optimal) paths in the network
Guerriero and Musmanno [9] developed a solution of
the multicriteria shortest path problem. They pnése
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a class of labeling methods to generate the esére

of Pareto-optimal path-length vectors from an origi
nodes to all other nodes in a multicriteria network.
Raith and Ehrgott [25] compared different strategie
for solving the BSP problem. They considered a
standard label correcting and label setting metlaod,
purely enumerative near shortest path approach, and
the two phase method, investigating different
approaches to solving problems arising in phases 1
and 2. In particular, they investigated the two ggha
method with ranking in phase 2. In order to compare
the different approaches, they investigated their
performance on three different types of networks.
They were able to show that the two phase method is
competitive with other commonly applied approaches
to solve the BSP problem. The two phase method
works well with both a ranking, a label correcting,
and a label setting approach in phase 2, but thel la
correcting and setting approaches appear to be
preferable as they are more stable.

Raith and Ehrgott [24] presented an algorithm to
compute a complete set of efficient solutions foe t
biobjective integer minimum cost flow problem.
They used the two phase method, with a parametric
network simplex algorithm in phase 1 to compute all
non-dominated extreme points. In phase 2, the
remaining non-dominated points (non-extreme
supported and non-supported) are computed using a
k — best flow algorithm on single-objective weighted
sum problems. Eusébio and Figueira [13] presented
an algorithm for finding all the non-dominated
solutions and corresponding efficient solutions for
biobjective integer network flow problems. The
algorithm solves a sequence af— constraint
problems and computes all the non-dominated
solutions by decreasing order of one of the objecti
functions.

Mote et al. [16] developed an algorithm to solve th
BSP. This algorithm first relaxes the integrality
conditions and solves a simple bicriterion network
problem. The bicriterion network problem is solved
parametrically, exploiting properties associatethwi
adjacent basis trees. Consider the following
biobjective linear programming formulation which is
to send 1 unit of flow from the soursceto every
other node along efficient paths.

(f1(x)= Z CijXij
é (i,j)ep
min F(x) = (10)
|f2(x)= Z dijxij
k @Uj)ep
s. t.
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x]'i
{j: G)EE}
n—1

xij -
{: (W)eE}
ifi=s

-1 ifi=t

x;j = 0 and integer ,\V(i,j) € E
4 The Algorithm

The shortest path problem has been studied
extensively and many polynomial and strongly
algorithms for solving it have been proposed [see,
[2]]. We present here a brief review of the primal
simplex algorithm for the shortest path problernkeli
minimum cost flow problem, the shortest path
problem has a spanning tree solution. Because s1ode
is the only source node to every other node is dema
node, the tree path from the source node to every
other node is a directed path. This implies that th
spanning tree must be a directed out tree rooted at
nodes. Any spanning tree for the shortest path
problem contains a unique directed path from node s
to every other node. The single-objective shortest
path simplex (SPS) algorithms maintain a basic
solution at each stage. Every basic feasible swluti
corresponds to a spanning tre8 of the
networkG(V,E). Every feasible basis treeis a
directed-out (spanning tree) rooted at nedand it
represents nondegenerate solutiow,,x;; > 0 for

all (i,j) € T becauser;; = |N;|, whereN; denoted
the set of nodes in the subtreerafooted aj.

A dual variable associated with each nodé& @f, E)

is a functiont: V — R. For a given dual variabte,

the reduced dual of an aftj) is defined ag;; =

c;j —m; + ;. The SPS algorithm finds the optimal
basis tree that is a tree of shortest paths and the
optimal node potentials (dual variables)i €V .
These dual variables are defined by requiring that
m, = 0 and that;; = 0 for each arc in the spanning
treeT.

At each iteration, the SPS algorithm selects an
eligible arc to enter the basis. There are differen
rules for the selection of entering arcs. The psead
moving from one feasible basis tree to another
feasible basis tree is called a simplex pivot. On a
simplex pivot an ar€p,q) T is added td creating

a unique cycle and an ai@,j) €T is deleted
yielding a new basis tree. A new basic feasible
solution is obtained by replacing afp,q) by
(pred(q),q) in T and updating the node
potentialse;, Vi € V. In each step in the network
simplex algorithm, a non-basic afp,q) with a
negative reduced cost to introduce into the spannin
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tree. The addition of an@, q) to the tree creates a
cycle which we orient in the same direction as
arc(p,q). Letw be the apex of this cycle. In this
cycle, every arc from node g to node w is a backwar
arc and every arc from nodeto nodep is a forward
arc: Consequently, the leaving arc would lie in the
segment frong to

w . In fact, the leaving arc would be the arc
(pred(q), q) because this arc has the smallest flow
value among all arcs in the segment from ngde
nodew.

According to the above discussion, (i#,q) is an
entering arc on a simplex pivot apg N,, then the
leaving arc is(pred(q),q) . If p € N, then the
network contains a negative cost cycle which yields
unbounded solution. L&(B = {(i,j) £ T: &, < 0} be

the set of all nonbasic arcs. The algorithm wobkht
increase the potentials of nodes in the subtretedoo
at nodeg by the amounlé;;| update the tree indices,
and repeat the computations until all nontree arcs
have nonnegative reduced costs. When the algorithm
terminates, the final tree would be a shortest path
(i.e. a tree in which the directed path from node s to
every other node is a shortest path).

4.1 Parametric Simplex

The optimal solution to the MCRRPP corresponds to
an extreme supported non-dominated point of the
BSP, so we present an algorithm that computes a
complete set of extreme supported non-dominated
points in the objective space. We will not compute
the non-supported non-dominated points.

The two phase method [25] is based on computing
supported and non-supported non-dominated points
separately. In phase 1 extreme supported efficient
solutions are computed, possibly taking advantdge o
their property of being obtainable as solutionshi®
weighted sum problem (4). The other approach is
based on the network simplex method where extreme
efficient solutions are generated in a right-tda-(gfr
left-to-right) fashion. In phase 2 the remaining
supported and non-supported efficient solutions can
be computed with different enumerative approaches,
as there is no theoretical characterization foirthe
efficient calculation. It is expected that the skar
space for the enumerative approach in phase 2 is
highly restricted due to information obtained irapha

1 so that the associated problems can be solvet a |
quicker than by solving BSP with a purely
enumerative approach only. The enumerative
methods can be employed in a very effective way as

Algorithm
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enumeration can be restricted to small areas of the
objective space. Phase 2 must determigeX such
that F(x) is in the triangle defined by two
consecutive non-dominated supported points in the
objective space (see Fig. 1).
In this paper, according to Theorem 2, we need only
to consider phase 1 to compute a complete set of
extreme supported efficient solutions. We use a
parametric simplex method proposed by Sedefio-
Noda and Gonzéalez-Martin [14]. Initially, one okth
two lexicographically optimal solutions, e.g., the
lex(1,2)-best solution, is obtained with a single-
objective network simplex algorithm witlex (1, 2)
objective. The procedure generates a completefset o
extreme efficient solutions moving in a right-tdtle
fashion. In the single-objective network simple, [2
each BFS is represented by a tree given by a set of
basic arcs with flow;; > 0, since the variables in
the minimum cost flow formulation of the shortest
path problem have no upper bounds; all nontree-(non
basic) arcs are at their lower bounds and haveva fl
of x;=0 . Let L*={(ij) €E:(ij)isnon—
basic in BFS xt with xt=0.
The efficient frontier is built in a right-to-lefashion,
using network simplex algorithm for the single
criterion optimization. Starting with lexicographic
minimum for the second objective, the arc entering
the basis is chosen upon a determination of the
smallest ratio between reduced costs for the two
criteria. The reduced costs of a given &ig) are
defined as follows:

Gj=cy—mi +1f
d,:j = dl] _T[l!i + 71']{1

In each iteration from the list St of arcs yieldithg
minimal ratio of the reduced costs one arc is chose
to enter the basic tree of the current efficiersiba
feasible flowx.

The algorithm starts with the extreme supported non
dominated poiny® = (j,,y3) associated with the
lexicographically minimum of f,(x) , (y; =
minyeX/2x, yIl=minxreX+f1r, where Xx=xx:
[2r+=y2+ and ending with the minimum ¢fZr.

Our algorithm is based on the algorithms presented
by Sedefio-Noda and Gonzalez-Martin [14, 15] which
is modified by Raith and Ehrgott [24]. These
algorithms for solving the continuous biobjective
minimum cost flow problem and the biobjective
integer minimum cost flow problem.
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1
2
3.
4.
5
6
7

NogahsMwbhR

16.

17.
18.

19.
20.
21.
22.
23.
24,

25.

Compie/” = (57,5.) = lex minyex (110%)), andy® = 51,7) = tex miner (27))
Let x(© be the starting extreme supported efficient sotutiorresponding tpz(o), EX_EFF =
{x©}, and letC,,;,, be the length of the shortest path frene ¢ corresponding to the spanning
tree generated by solving = min,¢y f; (x)
Compute the reduced costsi for x (@
Setz* = M (a large number)
Sett=1, k=1
Compute_Entering_Ar¢gt =%, ¢, n¢, %, S, wt1)
WhileSt™! = ¢ do
Begin
xt = Compute_New_BFS(x*~%,Lt7, n¢, ¢, §t°1)
Updaté, d andx®
Compute_Entering_AI@$~2,c, m¢, 4,51, wt™1)
If wt = w* then
wk = wt andx® = xt
EX_EFF = EX_EFF U {x*}
Identify the unique directed pd@hin the feasible spanning tree of shortest p&thisom

stot
C(Pk)
Compute(P,) = RGP
If z(P,) < z*, then setz* = z(P,) andP* = P,
If hy (Crnin) = z*, then P is an optimum path with* as the objective function value. G
to 25.
end if
end if
k=k+1
end if
t=t+1
end while
z(P*) = €®) is the optimal solution
R(P*)

Procedure 1 Compute_Entering_Arddt, ¢, d, n¢, n¢, St, wt)

Setw! = {ﬂ dy <0andc,; >0, V(i,j) € Lt}
ij
LetStc Lt be the set of non-basics arcs for whieim w! is attained
end

Procedure 2 Compute_New_ BF®x¢, L, n¢, n?, Pred, Depth, Thread, S')

While St # @ do
Let (i, ) be the first arc is*; setSt := St — (i, )
If d;j <0, &; > 0and(i,j) € L* then
Perform simplex-pivot with entering af% j)
Updatext, Lf, n¢, ¢, Pred, Depth, Thread, St
end if

end while
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The Compute_Entering_Arcs procedure calculates
the set of arcs® those arcs that do not fulfill the
optimality conditions with respect to the second
objective: These make up the sequence of pivots to
reach the adjacent extreme ND point in the objectiv
space. One of the candidate ar@sj) € St is
removed frons®t and enters the basis. By performing
a simplex-pivot with entering ar€i,j) , i.e,
introducing the ar¢i, j) into the basis and removing
the leaving arc(pred(j),j) from the basis, the
reduced costs may change. The reduced costs of all
arcs remaining irst are updated according to the
BFS obtained by pivotingi, /) intoxt. As long as
there are arcs remaining S with dij < 0and &; >
0,v(i,j) € Lt

The Compute_new_BFS procedure carries out
these pivots updating the spanning tree strucfitre.
next BFS x*! might de.ne an extreme ND
point (f,(xt*1), f,(xt*1)) € conv(Y). Denote by
the last extreme efficient solution that was fowwud
far. If for the new minimal ratiow!*! we
have witl = wt , then x!*! corresponds to an
extreme efficient solution. On the other hand, if
witl =wt  then x*! is not extreme,
i.e., (fi(x™Y), f,(x**1)) corresponds to a supported
non-extreme ND point.

It may be pointed out that every iteration in the
above algorithm does not yield a new efficient path
The pivot operations may change the tree of shiortes
paths, but may not change the path frotat. It can
be easily seen th&, froms tot changes if and only
if the entering arc is incident on a node belonging
to P,. Also, to obtain the first efficient path, the
algorithm selects arcs witﬁj = 0 if they exist, and
performs the pivot operation.

In case of all edge failure rates are equal, theeme
supported ND points in the objective space on
G(V,E) are determined as follows

Step 1: Generaté (V, E) by finding “artificial”
distancesi;} = Ad,; for each edgéi, j) € E.

Step 2: Find the set of extreme supported non-
dominated points in the objective spaceidif, E).
Step 3: Calculate the set of extreme supported non-
dominated points in the objective spaceGdii, E) as

a;
follows (C(P) = L e ci» D(P) = Ei per —)-

Theorem 7 In the worst case, the algorithm generates
the complete set of extreme efficient solutions of
BSP.

Proof See Theorem 1 in [24]
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5 Numerical Example

The following example problem is provided to
demonstrate the procedure presented in the previous
section. The example problem network consists of 10
nodes and 21 directed arcs, Nodes 1 and 10, nativel
are the origin and destination nodes. The arc egsts
distancesl;;, artificial distancesl;;d;; and reliability

p;; are given in Table 3.

Figure 2: Example network consisting of 10 nodes
and 21 directed edges

The example has seven efficient extreme supported
points in the decision space, the images of these
points corresponds to extreme supported non-
dominated points in the objective space.

The algorithm begins by generating the

lexicographical solutionsy!” and y{” for BSP
problem. This can be done by making use of the
network simplex algorithm, solving the network
parametric problemmin,cy Af; (x) + (1 — ) fo(x)

with- 21=1 and A=0 , respectively. The
Compute_Entering_Arcs procedure computes the
arcs that do not fulfill the optimality conditiongth
respect to the second objective. These arcs make a
sequence of pivots to reach an adjacent supported
extreme non-dominated point in the objective space.
The Compute_New_ BFS procedure updates the
spanning tree structure, the tree indices and the
potentials of the nodes with respect to the two
objectives.

If hyyq(Crin) = 2%, thenP* is an optimum path with

z* as the objective function value and the algorithm

terminates. When C(P),D(P) = (205,230) ,
c(P) 205
z(P) = D) — g-230 — 1.583 x 101°2,  When the

algorithm reaches the adjacent pdin®, 245), the
objective value ig(P) = —— = 4.2914 x 10108,

—245

Table 4 presents the ssanning trees representeng th
seven supported extreme efficient points in the
decision space. It also gives the objective valofes
(fi(x), f2(x)) and the corresponding shortest path
lengths from the source to destinat{@(P), D(P)).
Figure 3 presents the set of all extreme suppadiiad
points in the objective space.
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Table 3: Arcs costs, distances and artificial distancesfor the network example

@D | ey | dy pyy=e A pij = e M Aij Aijdij pi; = e fidi
(1,2) | 10 60 8.7565 x 10727 | 0.006 0.69768 0.011921  0.71526 0.48906
(1,3) | 25 80 1.8049 x 10735 | 0.006 0.61878 0.006412 0.51296 0.59872
(1,4) | 20 75 2.6786 x 10732 | 0.006 0.63763 0.008084  0.6063 0.54536
(2,3) | 5 45 2.8625 x 10720 | 0.006 0.76338 0.021228 0.95526 0.38471
(2,5) | 75 30 9.3576 x 10~* | 0.006 0.83527 0.037815 1.1345 0.32160
(2,7) | 95 15 3.059 x 1077 0.006 0.91393 0.085012 1.2752 0.27938
(3,4) | 65 10 4,5400 x 1075 0.006 0.94176 0.138859 1. 3886 0.24943
(3,5) | 90 20 2.0612 x 107° 0.006 0.88692 0.059195 1. 1839 0.30608
(3,6) | 75 15 3.059 x 1077 0.006 0.91393 0.084184 1. 2628 0.28287
(3,8) | 60 85 1.2161 x 10737 | 0.006 0.60050 0.005211 0.44294 0.64215
(4,6) | 40 120 7.6676 x 10753 | 0.006 0.48675 0.001885 0.2262 0.79756
(4,9) | 35 110 1.6889 x 107*8 | 0.006 0.51685 0.002582  0.28402 0.75275
(5,7) | 25 160 3.2575 x 10779 | 0.006 0.38289 0.000684  0.10944  0.89634
(5,8) | 145 | 50 1.9287 x 10722 | 0.006 0.74082 0.018245 0.91225 0.40162
(6,8) | 130 | 80 1.8049 x 10735 | 0.006 0.61878 0.006201 0.49608 0.60891
(6,9) | 55 140 1.5804 x 107 | 0.006 0.43171 0.000925 0.1295 0.87853
(7,8) | 140 | 35 6.3051 x 10716 | 0.006 0.81058 0.028206 0.98721 0.37261
(7,10)| 65 170 1.4789 x 10~7* | 0.006 0.36059 0.000562  0.09554  0.90888
(8,9) | 10 60 8.7565 x 10727 | 0.006 0.69768 0.011962 0.71772 0.48786
(8,10)| 70 185 45240 x 1078 | 0.006 0.32956 0.000452 0.08362 0.91978
(9,10)| 150 | 45 2.8625 x 10720 | 0.006 0.76338 0.021224  0.95508 0.38478
A
D(P)
(145,375)

In case of considering the operational probabdity
U, two cases are considered:

Figure 3: The set of extreme supported non-domihpbénts of min(C(P), D(P))

each edge ag; = e

Case 1: All failure rates are equal. Ugt= A. Then
G(V,E) is a scaled version 6f(V,E) ,i.e., the two
networks shar& andE and each edge i&(V,E) is
A times the original distance associated with each

—ﬂ.i]'d

(170.245)

(205.230)

(405, 215)

C(P)

edge inG(V,E), dg“j = Ad;;. In this case, we get the

same optimal solution as the case= e~ %.[]

Case 2: Failure rates are not equal. In this ocase,
may get different optimal paths,e., different
extreme supported ND points for the BSP from that
of operational probabilitieg;; = e~%j, Table 3 gives

the data for this case.

Table 4: The optimal shortest path spanning treegsponding to the efficient extreme solutionthiea decision space
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6 Conclusions

In this paper, we considered the minimum cost-
reliability ratio path Problem. The optimal solutiof

the MCRRPP corresponds to a supported extreme
non-dominated point in the objective space of a
biobjective shortest path. We used only phasettidn

two phase method for BSP to generate the set of
supported extreme non-dominated points in the
objective space. We used the termination criterion
presented by Ahuja [1] when the optimum solution is
reached. In the worst case, starting with the stpdo

extreme non-dominated point (¥,,y5) =
: fé(x)) ,

lex min ( , we will reach the
A

point (y5, 7,) = lex mingey (?Eg) In each simplex

2
iteration, the basic entering arc is chosen torbara
with the least ratio between improvement fofx)
and the deterioration ¢f (x), both expressed through
reduced costs. Whenever, the shortest path froon
changes, another non-dominated point is found.
In case of using the logarithmic transformation
between operational probability and edge length,
which was proposed by Melachrinoudis and Helander
[19], to calculate for each edge the “artificialdge
length dg“j = J;;d;; and to define a new network

http://www.lifesciencesite.com

G(V,E) with the same sets of edge attributes costs,
c;; and operational probabilitieg;; = e'd{}, but its
edge distances ard{},(i,j) € E . The optimal
solution of (8) corresponds to a supported extreme
non-dominated point of (9).

An area of future research is the generation df tes
instances and tests the proposed algorithm. Also, a
comparison of different solution strategies for the
BSP and investigate their performance on different
types of networks with the algorithm presentechis t
paper should be developed in the future.
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