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problem is shown to map into an extreme supported non-dominated objective point in the objective space of the 
biobjective shortest path problem. Different forms of reliability are presented. We assume that this reliability does 
not change over time. We employ a parametric network simplex algorithm to compute all extreme supported non-
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1 Introduction 
Suppose that the network is described by a connected, 
directed graph ���, ��, where � = 	1, 2, … , � is the 
node set and � = 	� = ��, ℎ�: �, ℎ ∈ �� is the edge set. 
The nodes are assumed to be perfectly reliable. 
Associated with each edge � ∈ � are two attributes. 
The first attribute is the edge cost ��� . The second 
attribute is the probability 0 < ��� < 1 , that when 
attempting to traverse edge ��, ��  it is found in an 
operational state. The reliability measures the 
probability that the edge will be operational. The 
reliability of a directed path is de.ned as the product 
of the reliability of edges in the path ��. �., ���� =∏ �����,��∈ !. We assume that this probability does not 
change over time. 
Let "  and #  be two given and distinguished nodes 
of ���, ��. A path � from " to # in � ��, �� or simply 
path is a sequence of non-repeated nodes and 
connecting arcs, joining the initial node "  to the 
terminal node # . We consider the problem of 
determination of a directed path � from a source node " to a destination node # for which 
 ∑ �����,��∈ ∏ �����,��∈  

 
is minimum among all such paths. We refer to this 
problem as the Minimum Cost -Reliability Ratio Path 
Problem (MCRRPP) [1]. 
Ahuja [1] observed that the optimum solution of the 
MCRRPP is an efficient extreme solution of the 
bicriterion path problem. He employed the parametric 
programming to enumerate these efficient extreme 
solutions and a sufficiency condition is used to cut 
down the enumeration substantially. The algorithm is 
shown to be pseudo-polynomial. Chandrasekaran [6] 

provided a polynomial bounded algorithm to solve 
minimal ratio spanning trees. Chandrasekaran et al. [7] 
presented a polynomial algorithm consisting of an 
indirect search in the set of efficient extreme points 
for computing the solution to the cost-reliability ratio 
spanning tree problem. Aneja and Nair [3] considered 
a finite serial multistage system where the measure of 
effectiveness of the system is a ratio of two return 
functions. The numerator of the ratio is an additive 
return function whereas the denominator is a 
multiplicative one. They considered two-criterion 
dynamic program and showed that the optimal 
solution of the ratio dynamic program is a non-
dominated solution of the two criteria program. 
Martins [12] presented a polynomial algorithm to 
determine a path between a specified pair of nodes, 
which minimizes the cost/capacity ratio. 
This paper is organized as follows. Section 2 presents 
concepts, definitions and problem properties. In 
Section 3, we present an algorithm to solve MCRRPP. 
A numerical example is presented in Section 4. In 
Section 5 we conclude with some comments. 
2 The problem and Properties 
Let Φ be the set of all directed paths in ���, �� from 
the source "  to the destination # .  For each � ∈ Φ 
define %��� = & �����,��∈                    

���� = ' �����,��∈           �1� 

(��� = & )����,��∈                  
 

where, )�� = − ln ��� , 0 < ��� ≤ 1  then )�� > 0 , ∀��, �� ∈ � and ���� = ∏ �����,��∈ = �0 ∑ 123�2,3�∈4  for 
all � ∈ Φ  which means that ���� = �05� �. 
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Now the problem we consider is min ∈Φ 8��� = %������� = %����5� �      �2� 

Associated with (2), we define the biobjective 
shortest path (BSP) problem as follows: 
 min ∈Φ 9%���, (���!                         �3� 

and min ∈Φ 9%���, −����!                    �4� 

The mathematical programming formulation of the 
BSP (3) is 
 

min <�=� =
>?@
?ABC�=� = & ���=����,��∈ BD�=� = & )��=����,��∈ 

E        �5� 

                                         ". #.                                                
& =��	�: ��,��∈G� − & =��	�: ��,��∈G� = H    1        �B  � = "       0          �B � ≠ ", #−1        �B � = #     E 

 =�� ∈ 	0, 1�, ∀��, �� ∈ � 
where "  is the designated source node and #  is the 
designated terminal node. Let J  be the set of all 
feasible solutions to (5) and it is also called the 
feasible set in the decision space. So, the problem (5) 
can be stated as follows: min <�=� = KBC�=�, BD�=�L              �6� ". #.  = ∈ J 
Now, we introduce general definitions and a 
classification of efficient solutions. We will follow 
the terminology of Raith and Ehrgott [24], Eusébio 
and Figueira [13], Raith and Ehrgott [25], and 
Hamacher et al. [18]. 
 
Definition 1 A feasible solution =N ∈ J  is called 
efficient if there does not exist any = ∈ J  with KBC�=�, BC�=�L ≤ KBC�=N�, BD�=N�L  and KBC�=�, BD�=�L ≠KBC�=N�, BD�=N�L. Otherwise = is inefficient. 
 
Let % be � ×  criterion matrix whose rows are the ��, 
the composite objective function is written λP%=. The 
following theorem shows that the set of efficient 
solutions in J  can be obtained by solving a 
parametric problem. 
 
Theorem 1 = ∈ J is efficient if and only if there 
exists 

λ ∈ Ω = Qλ ∈ �R: λ� > 0, & λ�
R

�SC = 1T 

such that =  minimizes the weighted-sum linear 
programming problem minUλP%=: = ∈ JV  (see [13] 
and [29], p.215). 
 
Efficiency is defined in the decision space. There is a 
natural counterpart in the objective space. The 
objective space is denoted by W and is given by 
 W = U<�=� ∈ �D: <�=� = KBC�=�, BD�=�L, = ∈ JV 
 
Definition 2 <�=� ∈ W is a non-dominated (ND) point 
if and only if = is an efficient solution to (6). 
Otherwise <�=� is a dominated point. 
 
Let JG⊆ J be the set of all efficient solutions of the 
BSP (6) and WX5⊆ W be the set of all ND objective 
points. We distinguish two different types of ND 
objective points, supported and non-supported ND 
objective points. Let WY = �Z[�WX5� + �YR 
 
where �Z[  is the convex hull operator and �YR =	] ∈ �R: ] ≥ 0� is the Pareto cone and �Z[�WX5� +�YR = U] ∈ �R: ] = ]_ + ]__, ]_ ∈ �Z[�WX5�, ]__ ∈�YR� . The non-dominated frontier of W is defined as 
the set [see Ehrgott [22] and Hamacher et al. [18]] 
 `] ∈ �Z[�WX5�: �Z[�WX5� ∩ b] + K−�YRLc = 	]�d 
 
Definition 3 (Supported ND solution WeX ). Let y 
denote an ND objective solution. Then, if ] belongs 
to the efficient frontier of W , ]  is a supported ND 
objective solution. Otherwise, ]  belongs to the 
interior of WY and it is a non-supported ND objective 
solution. 
The efficient frontier is piecewise linear and convex. 
Its breakpoints are the extreme ND objective points 
which are images of extreme efficient solutions in the 
decision space. 
 
Definition 4 (Extreme supported ND solution WfeX). 
Let ] ∈ WeX. Then, ] is an extreme supported solution 
if it is an extreme point of WY. Otherwise, ] is a non-
extreme supported solution. 
All supported ND objective points are located on the 
“lower-left boundary” of �Z[�WX5�, i.e. they are ND 
points of WY . The supported and the non-supported 
efficient solutions are defined to be the inverse 
images of the supported and the non-supported of ND 
objective points. They can be distinguished as follows: 
 

• Supported efficient solutions are those 
efficient solutions that can be obtained as 
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optimal solutions to a (single objective) 
weighted sum problem ming∈f λBC�=� + �1 − λ�BD�=�           �7� 

for some λ > 0 . The set of all supported 
efficient solutions is denoted by JeG , its non-
dominated image is WeX. 

• Supported efficient solutions which define 
an extreme point of WY  are called extreme 
supported efficient solutions and is denoted 
by JfeG. 

• The remaining efficient solutions in JXG : =JG\JeG  are called non-supported efficient 
solutions. They cannot be obtained as 
solutions of a weighted sum problem as their 
images lie in the interior of WY. The set of 
non-supported non-dominated points is 
denoted by WXX . Note that this definition 
implies WXX⊂ �#K�Z[�WX5� + �YRL . There 
is no known characterization of non-
supported efficient solutions that leads to a 
polynomial time algorithm for their 
computation. 
 

The two objective functions BC  and BD  do generally 
not attain their individual optima for the same values 
of =N. We will assume in the following that there exists 
no =N  such that =N ∈ arg min	BC�  and =N ∈ arg min	BD� 
for a problem of the form (5). 
The solution of the BSP contain both non-supported 
and supported non-dominated vectors / efficient 

solutions, which can be geometrically characterized 
as follows: the non-supported non-dominated vectors 
are located inside the feasible region in the objective 
space, while the supported vectors are found on the 
boundaries of the convex hull of this feasible region. 
Supported non-dominated vectors correspond to the 
optimal solutions of a sequence of single objective 
parametric network flow problems. 
All the previous terminology can be summarized in 
Table 1. 
 
Table 1: Classification of efficient and non-dominated in 

the decision and objective spaces 
Decision Space Objective Space J: set of all feasible 

solutions 
W = <�J�: image of X 
under the objective function 
(objective space) JG : set of all efficient 

solutions 
WX5: set of all non-
dominated objective 

solutions JeG⊆ JG : set of all 
supported efficient 
solutions 

WeX5⊆ WX5:  set of all 
supported non-dominated 
objective solutions JfeG⊆ JeG : set of all 

extreme supported efficient 
solutions 

WfeX5⊆ WeX5: set of all 
extreme supported non-
dominated objective 
solutions JXG: = JG\JeG : set of all 

non-supported efficient 
solutions 

WXX5⊆ WX5\WeX5: set of all 
non-supported non-
dominated objective 
solutions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: All non-dominated points in the objective space 

 

        Supported ND                     

     Non-Supported ND 
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Theorem 2 An optimal solution �∗ of the MCRRPP 
maps into a supported extreme non-dominated point 
of �Z[�W�. 
Proof As we mentioned above ���� = �05� �: It 
easy to see that the optimal solution �∗ of the 
MCRRPP maps into a non-dominated objective point 
of (3). Otherwise, let �p such that %K�pL < %��∗� and (K�pL < (��∗� with strict inequality holding at least 
at one of these two places. This implies %K�pL�05� p� < %��∗��05� ∗� 
since % ≥ 0.  That is %K�pL�K�pL < %��∗����∗� 

which contradict the optimality of �∗. 
Suppose that �∗ maps into ]∗ ∈ �Z[�W� + �YD. We 
want to show that ]∗ is an extreme point of WY.  
Suppose the contrary, ]∗ is not an extreme point 
of WY. Then there exist two extreme points ]C and ]D 
(corresponding to two efficient extreme paths �C 
and �D), such that ]∗ = q]C + �1 − q�]D; 0 < q < 1, 
where ]C = K%��C�, (��C�L ]D = K%��D�, (��D�L 
and ]∗ = K%��∗�, (��∗�L 
Assume that %��C����C� = sC ≤ %��D����D� = sD 

Now, (��∗� = q(��C� + �1 − q�(��D� 
and by convexity of �0g, we have �05� ∗� = �0Kt5� u�v�C0t�5� w�L< q�05� u� + �1 − q��05� w� = q %��C�sC + �1 − q� %��D�sD  

= 9q%��C� + �1 − q�%��D�!sC = %��∗�sC  

That is, x� ∗�y� ∗� > sC, contradicting the optimality of �∗ ∎ 
The problem, thus, reduces to searching through 
shortest paths which correspond to non-dominated 
extreme points of the set WY in the biobjective space. 
 
Definition 5 A function B: z⊆ � → � is unimodal on 
an interval z  if there exists a =∗ ∈ z  at which B 
attains a minimum and B  is nondecreasing on the 
interval 	= ∈ z: = ≥ =∗�  whereas it is nonincreasing 
on the interval 	= ∈ z: = ≤ =∗�. 
It is well known that the efficient frontier obtained by 
joining the points �|0C to �| for all } = 2, … , ~, is a 
piecewise linear convex function and typically is of 

the form as shown in Fig. 1. Let �C, �D, … , �� be the 
set of all ND extreme points of (3) in the increasing 
order of their (����  value. Let %��� = %����  and %��g = %��C�. Further, let �| denote the line passing 
through �|0C  and �| . The equation of �|  is given 

by  ] = �| − �|= , where �| = 5� ��05� ��u�x� ��u�0x� �� 
and �| = (��|� + �|%��|� . For any point �=, ]� ∈�| define ℎ|�=� = =�� = =���0��g. It is easy to see 
that ℎ|�=� is a unimodular function and achieves its 

maximum at =∗ = C��. 

Let =� = %����, ∀� = 1, 2, … , ~. Further, let 8|∗ = minC���|	8����� 
 

and �∗ be the path for which this minimum is 
attained. 
 
Theorem 3 If  ℎ|�%���� ≥ 8|∗ , then �∗ is an optimum 
solution of the MCRRPP. 
Proof Since the efficient frontier is piecewise linear 
and convex, it follows that �| − �|=� < (����, ∀ � =} + 1, } + 2, … , �, then 
 ℎ|�=�� = =����0��g2 < %�����5� 2� = 8����, ∀ �= } + 1, … , � 
Since the function ℎ|�=� achieves its maximum 

at = = C��, so we consider two cases, the first case 

when =| ≤ C��, and by the nature of the function ℎ|�=� 8|∗ ≤ ℎ|�%���� ≤ ℎ|�=�� < 8����,∀� = } + 1, } + 2, … , s 
 

The second case when =| > C��, let =N|  be such that ℎ|�=|� = ℎ|�=N|� 
 8|∗ ≤ ℎ|�%���� ≤ ℎ|�=|� ≤ ℎ|�=��,∀=N| ≤ =� ≤ =|    
and the proof is complete ∎ 
 
The paths are enumerated in the order ��, ��0C, … , �C 
by the parametric analysis which we are going to 
explain in Section 4. We can use the following 
condition as a termination condition. Let �p∗  be the 
minimum of  8̃∗ = min|����	8�����. 
 
Theorem 4 If  ℎ|vC�%��g� ≥ 8̃|∗ , then �p∗   is an 
optimum solution of the MCRRPP 
Proof The proof is similar to the previous Theorem 
∎ 
 
2.1 A different measure for reliability 
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In this section we are presenting different measure 
for the reliability of a path ���� = ∏ �����,��∈ . We 
assume that this probability does not change over 
time. Although there are no limitations regarding the 
number of edges that can be in a failed state, we 
assume that failures occur independently and they are 
unrecoverable. Reliability of a path refers to the 
probability of traversal, i.e., the probability that all 
edges along the path are operational. We model the 
operational probability of an edge as an exponential 
function of physical distance. A realistic assumption 
regarding ��� is that failures that prohibit the use of 
the edge for traversal are generated according to a 
Poisson process with constant rate λ��, ��, �� ∈ � , 
modeling ���  as an exponential function of the 
physical distance. The failure rate λ�� represents the 
average number of failures per unit length. We 
represent the relationship between edge lengths, 
operational probability and failure rate, using the 
exponential model introduced by Melachrinoudis and 
Helander [19], as ��� = �0λ23123. 
Suppose we know for each edge ��, �� ∈ � its failure 
rate λ��  and distance )�� . The operational 
probabilities are calculated by using the exponential 
model  ��� = �0λ23123 . We use the logarithmic 
transformation between operational probability and 
edge length, which was proposed by Melachrinoudis 
and Helander [19], to calculate for each edge ��, �� ∈ �  the “artificial” edge length )��� =− ln ��� = λ��)��  and to define a new network ����, �� with the same sets of edge attributes costs, ���  and operational probabilities, ��� = �0123�  but its 
edge distances are )��� , ��, �� ∈ � . Due to the 
logarithmic transformation, the most reliable route 
between nodes � and � on ���, �� is the shortest path 
between nodes � and � on �� ��, ��. 
 
Let Φ be the set of all directed paths in ����, ��. For 
each � ∈ Φ define %��� = & �����,��∈  

����� = ' �����,��∈  

(���� = & )����,��∈  

where, )��� = − ln ��� , 0 < ��� ≤ 1  then )��� > 0 , ∀��, �� ∈ �  and ����� = ∏ �����,��∈ = �0 ∑ 123��2,3�∈4  

for all � ∈ Φ  which means that ����� = �05�� �. 
Now, the problem we consider is 
 min ∈Φ 8��� = %��������         �8� 

 
Associated with (8) we define the following 
biobjective shortest path (BSP) problem 
 min ∈Φ �%���, (�����        �9� 

and min ∈Φ �%���, −������ 
 

Theorem 5 An optimal solution �∗ of the problem (8) 
maps into a supported extreme non-dominated point 
of (9). 
Proof Similar to Theorem 1 
 
Theorem 6 If all edge failure rates are equal, the 
optimal solution �∗ of (2) is the same as the optimal 
solution of (8) 
Proof Let λ�� = λ, ∀��, �� ∈ �. The network ����, �� 
has the same topology as ���, �� and its edge 
lengths have been scaled by λ, i.e., )��� = λ)��. Let �∗ 
be the optimal solution of the 

problem min ∈Φ 8��� = x� �y�� �. Since (� ��� =∑ )�����,��∈ = ∑ λ)����,��∈ = λ(���, hence, min ∈Φ x� �y�� � =min ∈Φ x� �n��� �4� = min ∈Φ x� �n�λ��4� = min ∈Φ x� �Ky� �Lλ , 
which proves that �∗ is also the optimal solution of min ∈Φ x� �y� � ∎ 

 

Table 2: Classification of BSP algorithms and references 

Two Phase Method Path/tree Mote et al. [16] 
Biobjective Label Correcting Node-selection Skriver and Andersen [27], 

Brumbaugh-Smith and Shier [4] 
Biobjective Label Setting Label-selection Hansen [10] 
Kth Shortest Path Ranking Clímaco and Martins [8] 
Near Shortest Path Ranking Carlyle and Wood [5] 

 
3 Solution Method  
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3.1 A brief review of solution methods for the BSP 
problem 
In this section we give a brief review of different 
methods to solve BSP exactly. Three main 
approaches are considered. The two phase method, 
the biobjective labeling methods, and ranking 
methods. Climaco and Martin [8] and Mote et al. [16] 
fall in the path/tree handling procedure. Hansen [10], 
Brumbaugh-Smith and Shier [4] and Skriver and 
Andersen [27] fall in the labeling procedure. 
In table 2 the references that fall in the main 
approaches to solve BSP are listed. 
Our review is based on Skriver [26] and Raith and 
Ehrgott [25] 
1) Two phase method 

In the existing literature all algorithms, except 
perhaps the Parametric Approach by Mote et al. 
[16], have been proven slower than the Label 
Correcting approach [27]. In phase I, all the 
extreme supported efficient solutions (efficient 
solutions which define extreme points of the 
convex hull of the set of feasible objective 
vectors) are computed. In the second phase the 
remaining efficient solutions are computed with 
one of the enumerative approaches mentioned 
before. The enumerative methods can be 
employed in a very effective way as enumeration 
can be restricted to small areas of the objective 
space [see [25]]. 

2) Biobjective label correcting 
Label correcting differs in whether they employ 
label-selection or node-selection. Skriver and 
Andersen [27] have claimed that the node-
selection algorithms outperform the path/tree 
algorithms (two phase method) because the 
number of non-dominated values is always 
smaller than (or equal to) the number of efficient 
paths. A stronger argument is that the node-
labeling algorithm only finds the list of non-
dominated values at the terminal node, and not 
the actual efficient paths. 

3) Biobjective label setting 
Biobjective label setting approaches always 
employ label-selection. In particular, a 
lexicographically smallest label with respect to 
all nodes is selected among all tentative labels in 
each iteration. Guerriero and Musmanno [9] 
investigated label correcting and label setting 
methods for the multicriteria shortest path tree 
problem. There are problem instances where 
label-selection is superior and others where 
node-selection is superior. Furthermore, label 
setting is superior for some instances, and label 
correcting is superior for others. 

4) Ranking methods 

Starting with the optimal value for one objective, 
the second-best solution, the third-best solution, 
etc. is obtained until the k-best solution is 
reached. For BSP, the process continues until it 
is guaranteed that all non-dominated points have 
been found. Kth shortest path methods have been 
found not to be competitive with label correcting 
methods. On the basis of computational tests, 
Carlyle and Wood [5] conclude that their near 
shortest path routine solves the k-shortest path 
problem faster than other algorithms dedicated to 
solving the k-shortest path problem [25]. 

 
A label correcting algorithm with node-selection is 
identified as the most successful approach to solve 
BSP problems by Skriver and Andersen [27] and 
label setting as in Guerriero and Musmanno [9]. 
Raith and Ehrgott [25] conclude that two phase 
method is competitive with other commonly applied 
approaches to solve the BSP problem. The two phase 
method works well with both a ranking, a label 
correcting, and a label setting approach in phase 2, 
but the label correcting and setting approaches appear 
to be preferable as they are more stable. The purely 
enumerative near shortest path approach is a very 
successful approach to solve some problem instances, 
but the run-time on others is very long. 
Skriver and Andersen [27] argued that the parametric 
approach is slower, due to the structure of the 
algorithm. The approach is to use the weighting 
method to find the efficient extreme paths, and then 
use backtracking of spanning trees to search for non-
extreme efficient paths. The weighting method means 
solving LP problems, but for the shortest-path 
problem that is done by Dijkstra’s shortest-path 
algorithm (or a similar algorithm). It turns out that 
Dijkstra’s algorithm is actually a slower approach in 
practice than the Label correcting routine. On top of 
this comes the fact, that the weighting method of the 
parametric approach by far is faster than the 
backtracking part. When we are backtracking, we 
might have to evaluate all the edges in all the 
spanning trees in the worst case, resulting in an 
exponentially growing number of comparisons. 
We are going to use in this paper phase I in the two 
phase method. The backtracking part which makes 
the two phase method slower than the labeling 
algorithms will not be used here. Since the non-
extreme efficient paths need not be generated. 
Skriver and Andersen [27] presented a label 
correcting algorithm for solving the BSP. They 
imposed some simple domination conditions, which 
reduced the number of iterations needed to find all 
the efficient (Pareto optimal) paths in the network. 
Guerriero and Musmanno [9] developed a solution of 
the multicriteria shortest path problem. They present 
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a class of labeling methods to generate the entire set 
of Pareto-optimal path-length vectors from an origin 
node " to all other nodes in a multicriteria network. 
Raith and Ehrgott [25] compared different strategies 
for solving the BSP problem. They considered a 
standard label correcting and label setting method, a 
purely enumerative near shortest path approach, and 
the two phase method, investigating different 
approaches to solving problems arising in phases 1 
and 2. In particular, they investigated the two phase 
method with ranking in phase 2. In order to compare 
the different approaches, they investigated their 
performance on three different types of networks. 
They were able to show that the two phase method is 
competitive with other commonly applied approaches 
to solve the BSP problem. The two phase method 
works well with both a ranking, a label correcting, 
and a label setting approach in phase 2, but the label 
correcting and setting approaches appear to be 
preferable as they are more stable. 
Raith and Ehrgott [24] presented an algorithm to 
compute a complete set of efficient solutions for the 
biobjective integer minimum cost flow problem. 
They used the two phase method, with a parametric 
network simplex algorithm in phase 1 to compute all 
non-dominated extreme points. In phase 2, the 
remaining non-dominated points (non-extreme 
supported and non-supported) are computed using a } − best flow algorithm on single-objective weighted 
sum problems. Eusébio and Figueira [13] presented 
an algorithm for finding all the non-dominated 
solutions and corresponding efficient solutions for 
biobjective integer network flow problems. The 
algorithm solves a sequence of � − constraint 
problems and computes all the non-dominated 
solutions by decreasing order of one of the objective 
functions. 
Mote et al. [16] developed an algorithm to solve the 
BSP. This algorithm first relaxes the integrality 
conditions and solves a simple bicriterion network 
problem. The bicriterion network problem is solved 
parametrically, exploiting properties associated with 
adjacent basis trees. Consider the following 
biobjective linear programming formulation which is 
to send 1 unit of flow from the source "  to every 
other node along efficient paths. 
 

min <�=� =
>?
@
?ABC�=� = & ���=����,��∈ 

BD�=� = & )��=����,��∈ 
        �10�E 

s. t.                                                

& =��	�: ��,��∈G� − & =��	�: ��,��∈G�
= H     − 1        �B  � = "      

−1        �B � = #     E 
 =�� ≥ 0 �) �#���� , ∀��, �� ∈ � 
 

4 The Algorithm 
 
The shortest path problem has been studied 
extensively and many polynomial and strongly 
algorithms for solving it have been proposed [see, 
[2]]. We present here a brief review of the primal 
simplex algorithm for the shortest path problem. Like 
minimum cost flow problem, the shortest path 
problem has a spanning tree solution. Because node " 
is the only source node to every other node is demand 
node, the tree path from the source node to every 
other node is a directed path. This implies that the 
spanning tree must be a directed out tree rooted at 
node " . Any spanning tree for the shortest path 
problem contains a unique directed path from node s 
to every other node. The single-objective shortest 
path simplex (SPS) algorithms maintain a basic 
solution at each stage. Every basic feasible solution 
corresponds to a spanning tree �  of the 
network ���, �� . Every feasible basis tree �  is a 
directed-out (spanning tree) rooted at node ", and it 
represents nondegenerate solution, �. �. , =�� > 0  for 
all ��, �� ∈ �  because =�� = ���� , where ��  denoted 
the set of nodes in the subtree of � rooted at �. 
A dual variable associated with each node of ���, �� 
is a function �: � → �. For a given dual variable �, 
the reduced dual of an arc ��, �� is defined as �̃�� =��� − �� + �� . The SPS algorithm finds the optimal 
basis tree that is a tree of shortest paths and the 
optimal node potentials (dual variables) �� , � ∈ � . 
These dual variables are defined by requiring that �� = 0 and that �̃�� = 0 for each arc in the spanning 
tree �. 
At each iteration, the SPS algorithm selects an 
eligible arc to enter the basis. There are different 
rules for the selection of entering arcs. The process of 
moving from one feasible basis tree to another 
feasible basis tree is called a simplex pivot. On a 
simplex pivot an arc ��, ��∉ � is added to � creating 
a unique cycle and an arc ��, �� ∈ �  is deleted 
yielding a new basis tree. A new basic feasible 
solution is obtained by replacing arc ��, ��  by ����)���, ��  in  �  and updating the node 
potentials �� , ∀� ∈ � . In each step in the network 
simplex algorithm, a non-basic arc ��, ��  with a 
negative reduced cost to introduce into the spanning 
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tree. The addition of arc ��, �� to the tree creates a 
cycle which we orient in the same direction as 
arc ��, ��. Let ~  be the apex of this cycle. In this 
cycle, every arc from node q to node w is a backward 
arc and every arc from node ~ to node � is a forward 
arc: Consequently, the leaving arc would lie in the 
segment from � to ~ . In fact, the leaving arc would be the arc ����)���, �� because this arc has the smallest flow 
value among all arcs in the segment from node � to 
node ~. 
According to the above discussion, if ��, ��  is an 
entering arc on a simplex pivot and �∉ ��, then the 
leaving arc is ����)���, �� . If � ∈ ��  then the 
network contains a negative cost cycle which yields 
unbounded solution. Let �� = U��, ��∉ �: �̃�� < 0V be 
the set of all nonbasic arcs. The algorithm would then 
increase the potentials of nodes in the subtree rooted 
at node � by the amount ��̃��� update the tree indices, 
and repeat the computations until all nontree arcs 
have nonnegative reduced costs. When the algorithm 
terminates, the final tree would be a shortest path tree 
(�. �., a tree in which the directed path from node s to 
every other node is a shortest path). 
 
4.1 Parametric Simplex 

 
The optimal solution to the MCRRPP corresponds to 
an extreme supported non-dominated point of the 
BSP, so we present an algorithm that computes a 
complete set of extreme supported non-dominated 
points in the objective space. We will not compute 
the non-supported non-dominated points.  
The two phase method [25] is based on computing 
supported and non-supported non-dominated points 
separately. In phase 1 extreme supported efficient 
solutions are computed, possibly taking advantage of 
their property of being obtainable as solutions to the 
weighted sum problem (4). The other approach is 
based on the network simplex method where extreme 
efficient solutions are generated in a right-to-left (or 
left-to-right) fashion. In phase 2 the remaining 
supported and non-supported efficient solutions can 
be computed with different enumerative approaches, 
as there is no theoretical characterization for their 
efficient calculation. It is expected that the search 
space for the enumerative approach in phase 2 is 
highly restricted due to information obtained in phase 
1 so that the associated problems can be solved a lot 
quicker than by solving BSP with a purely 
enumerative approach only. The enumerative 
methods can be employed in a very effective way as 

enumeration can be restricted to small areas of the 
objective space. Phase 2 must determine = ∈ J such 
that <�=�  is in the triangle defined by two 
consecutive non-dominated supported points in the 
objective space (see Fig. 1). 
In this paper, according to Theorem 2, we need only 
to consider phase 1 to compute a complete set of 
extreme supported efficient solutions. We use a 
parametric simplex method proposed by Sedeño-
Noda and González-Martín [14]. Initially, one of the 
two lexicographically optimal solutions, e.g., the ��=�1, 2� -best solution, is obtained with a single-
objective network simplex algorithm with ��=�1, 2� 
objective. The procedure generates a complete set of 
extreme efficient solutions moving in a right-to-left 
fashion. In the single-objective network simplex [2], 
each BFS is represented by a tree given by a set of 
basic arcs with flow =�� > 0, since the variables in 
the minimum cost flow formulation of the shortest 
path problem have no upper bounds; all nontree (non-
basic) arcs are at their lower bounds and have a flow 
of  =�� = 0 . Let  �  = 	��, �� ∈ �: ��, �� �" Z −��"�� � �<z =# ~�#ℎ =#=0.  
The efficient frontier is built in a right-to-left fashion, 
using network simplex algorithm for the single 
criterion optimization. Starting with lexicographical 
minimum for the second objective, the arc entering 
the basis is chosen upon a determination of the 
smallest ratio between reduced costs for the two 
criteria. The reduced costs of a given arc ��, ��  are 
defined as follows: 
 �̃�� = ��� − ��¡ + ��¡ )¢�� = )�� − ��1 + ��1 

 
In each iteration from the list St of arcs yielding the 
minimal ratio of the reduced costs one arc is chosen 
to enter the basic tree of the current efficient basic 
feasible flow =. 
The algorithm starts with the extreme supported non-
dominated point ]�£� = �]NC, ]D∗�  associated with the 
lexicographically minimum of  BD�=� , �]D∗ =min=∈JB2=, ]1=min=∈J∗B1=, where J∗==∗: B2=∗=]2∗ and ending with the minimum of B1=. 

Our algorithm is based on the algorithms presented 
by Sedeño-Noda and González-Martín [14, 15] which 
is modified by Raith and Ehrgott [24]. These 
algorithms for solving the continuous biobjective 
minimum cost flow problem and the biobjective 
integer minimum cost flow problem. 

 
 
Algorithm 
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1. Compute ]C�£� = �]C∗, ]ND� = ��= ming∈f ¤BC�=�BD�=�¥, and ]�£� = �]NC, ]D∗� = ��= ming∈f ¤BD�=�BC�=�¥ 

2. Let =�£� be the starting extreme supported efficient solution corresponding to ]D�£�, �J_�<< =U=�£�V, and let %��� be the length of the shortest path from " to # corresponding to the spanning 
tree generated by solving ]C∗ = ming∈f BC�=� 

3. Compute the reduced costs �̃, )¢ for =�£� 
4. Set 8∗ = § (a large number) 
5. Set # = 1, } = 1 
6. Compute_Entering_Arcs�� 0C, �, �¡ , �1, z 0C, ~ 0C� 
7. While z 0C ≠ ∅ do 
8.    Begin 
9.             =  = %Zs�©#�_��~_�<z�= 0C, � 0C, �¡ , �1, z 0C� 
10.             Update �̃, )¢ and =  
11.             Compute_Entering_Arcs�� 0C, �, �¡ , �1 , z 0C, ~ 0C� 
12.             If ~  ≠ ~| then 
13.             ~| = ~  and =| = =  
14.             �J_�<< = �J_�<< ∪ 	=|� 
15.             Identify the unique directed path �| in the feasible spanning tree of shortest paths �| from " to # 

16.              Compute 8��|� = x� ��y� �� 
17.              If 8��|� ≤ 8∗, then set 8∗ = 8��|� and �∗ = �|  
18.              If ℎ|�%���� ≥ 8∗, then �∗ is an optimum path with 8∗ as the objective function value. Go 

to 25. 
19.             end if 
20.             end if 
21.             } = } + 1 
22.             end if 
23.             # = # + 1 
24. end while 

25. 8��∗� = x� ∗�y� ∗� is the optimal solution 

 
Procedure 1 Compute_Entering_Arcs K�  , �̃,  )« , �¡ , �1,  z  ,  ~ L 
 

1. Begin 
2.    �̃�� = ��� − ��¡ + ��¡ 
3.    )¢�� = )�� − ��1 + ��1  
4.    z  = ∅ 

5.    Set ~  = `1p23¡2̃3 : )¢�� < 0 �) �̃�� > 0, ∀��, �� ∈ � d 
6.     Let z ⊆ �  be the set of non-basics arcs for which min ~  is attained 
7. end 

 
Procedure 2 Compute_New_BFS �=  , �  , �¡ , �1 ,   ���), (��#ℎ, �ℎ���), z � 
 

1. While z  ≠ ∅ do 
2.    Let ��, �� be the first arc in z ; set z  ≔ z  − ��, �� 
3.    If )¢�� < 0, �̃�� > 0 and ��, �� ∈ �  then 
4.    Perform simplex-pivot with entering arc ��, �� 
5.    Update =  , �  , �¡ , �1 ,   ���), (��#ℎ, �ℎ���), z  
6.     end if 
7. end while 
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The Compute_Entering_Arcs procedure calculates 
the set of arcs z   those arcs that do not fulfill the 
optimality conditions with respect to the second 
objective: These make up the sequence of pivots to 
reach the adjacent extreme ND point in the objective 
space. One of the candidate arcs ��, �� ∈ z   is 
removed from z  and enters the basis. By performing 
a simplex-pivot with entering arc ��, �� , �. �., 
introducing the arc ��, �� into the basis and removing 
the leaving arc ����)���, ��  from the basis, the 
reduced costs may change. The reduced costs of all 
arcs remaining in z   are updated according to the 
BFS obtained by pivoting ��, �� into =  . As long as 
there are arcs remaining in z  with )¢�� < 0 �) �̃�� >0, ∀��, �� ∈ � . 

The Compute_new_BFS procedure carries out 
these pivots updating the spanning tree structure. The 
next BFS = vC  might de.ne an extreme ND 
point KBC�= vC�, BD�= vC�L ∈ �Z[�W�. Denote by =| 
the last extreme efficient solution that was found so 
far. If for the new minimal ratio ~ vC  we 
have  ~ vC ≠ ~  , then = vC  corresponds to an 
extreme efficient solution. On the other hand, if ~ vC = ~   then = vC  is not extreme, �. �. , KBC�= vC�, BD�= vC�L corresponds to a supported 
non-extreme ND point. 

It may be pointed out that every iteration in the 
above algorithm does not yield a new efficient path. 
The pivot operations may change the tree of shortest 
paths, but may not change the path from " to #. It can 
be easily seen that �| from " to # changes if and only 
if the entering arc is incident on a node belonging 
to  �| . Also, to obtain the first efficient path, the 
algorithm selects arcs with )¢�� = 0 if they exist, and 
performs the pivot operation. 
In case of all edge failure rates are equal, the extreme 
supported ND points in the objective space on ���, �� are determined as follows 
 
Step 1: Generate ����, �� by finding “artificial” 
distances )��� = λ)�� for each edge ��, �� ∈ �. 
Step 2: Find the set of extreme supported non-
dominated points in the objective space on ����, ��. 
Step 3: Calculate the set of extreme supported non-
dominated points in the objective space on ���, �� as 

follows b%��� = ∑ �����,��∈ , (��� = ∑ 123
λ

��,��∈G c. 

 
Theorem 7 In the worst case, the algorithm generates 
the complete set of extreme efficient solutions of 
BSP. 
Proof See Theorem 1 in [24]∎ 
 
 

5 Numerical Example 
The following example problem is provided to 
demonstrate the procedure presented in the previous 
section. The example problem network consists of 10 
nodes and 21 directed arcs, Nodes 1 and 10, natively, 
are the origin and destination nodes. The arc costs ���, 
distances )��, artificial distances λ��)�� and reliability ��� are given in Table 3. 

 
Figure 2: Example network consisting of 10 nodes 
and 21 directed edges 
 
The example has seven efficient extreme supported 
points in the decision space, the images of these 
points corresponds to extreme supported non-
dominated points in the objective space. 
The algorithm begins by generating the 

lexicographical solutions ]C�£�  and ]D�£�  for BSP 
problem. This can be done by making use of the 
network simplex algorithm, solving the network 
parametric problem ming∈f λBC�=� + �1 − λ�BD�=� 
with λ = 1  and λ = 0 , respectively. The 
Compute_Entering_Arcs procedure computes the 
arcs that do not fulfill the optimality conditions with 
respect to the second objective. These arcs make a 
sequence of pivots to reach an adjacent supported 
extreme non-dominated point in the objective space. 
The Compute_New_BFS procedure updates the 
spanning tree structure, the tree indices and the 
potentials of the nodes with respect to the two 
objectives. 
If  ℎ|vC�%���� ≥ 8∗, then �∗ is an optimum path with 8∗ as the objective function value and the algorithm 
terminates. When  %���, (��� = �205, 230� , 8��� = x� �n���4� = D£®n�w¯° = 1.583 × 10C£D .  When the 

algorithm reaches the adjacent point �70, 245�, the 

objective value is 8��� = C±£n�w²³ = 4.2914 × 10C£´. 

Table 4 presents the spanning trees representing the 
seven supported extreme efficient points in the 
decision space. It also gives the objective values of KBC�=�, BD�=�L  and the corresponding shortest path 
lengths from the source to destination K%���, (���L. 
Figure 3 presents the set of all extreme supported ND 
points in the objective space.  
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Table 3: Arcs costs, distances and artificial distances for the network example 

��, �� ��� )��  ��� = �0123 λ  ��� = �0λ123 λ�� λ��)��  ��� = �0λ23123 �1, 2� 10 60 8.7565 × 100D± 0.006 0.69768 0.011921 0.71526 0.48906 �1, 3� 25 80 1.8049 × 100µ® 0.006 0.61878 0.006412 0.51296 0.59872 �1, 4� 20 75 2.6786 × 100µµ 0.006 0.63763 0.008084 0.6063 0.54536 �2, 3� 5 45 2.8625 × 100D£ 0.006 0.76338 0.021228 0.95526 0.38471 �2, 5� 75 30 9.3576 × 100C¶ 0.006 0.83527 0.037815 1.1345 0.32160 �2, 7� 95 15 3.059 × 100± 0.006 0.91393 0.085012 1.2752 0.27938 �3, 4� 65 10 4.5400 × 100® 0.006 0.94176 0.138859 1. 3886 0.24943 �3, 5� 90 20 2.0612 × 100· 0.006 0.88692 0.059195 1. 1839 0.30608 �3, 6� 75 15 3.059 × 100± 0.006 0.91393 0.084184 1. 2628 0.28287 �3, 8� 60 85 1.2161 × 100µ± 0.006 0.60050 0.005211 0.44294 0.64215 �4, 6� 40 120 7.6676 × 100®µ 0.006 0.48675 0.001885 0.2262 0.79756 �4, 9� 35 110 1.6889 × 100¶´ 0.006 0.51685 0.002582 0.28402 0.75275 �5, 7� 25 160 3.2575 × 100±£ 0.006 0.38289 0.000684 0.10944 0.89634 �5, 8� 145 50 1.9287 × 100DD 0.006 0.74082 0.018245 0.91225 0.40162 �6, 8� 130 80 1.8049 × 100µ® 0.006 0.61878 0.006201 0.49608 0.60891 �6, 9� 55 140 1.5804 × 100¸C 0.006 0.43171 0.000925 0.1295 0.87853 �7, 8� 140 35 6.3051 × 100C¸ 0.006 0.81058 0.028206 0.98721 0.37261 �7, 10� 65 170 1.4789 × 100±¶ 0.006 0.36059 0.000562 0.09554 0.90888 �8, 9� 10 60 8.7565 × 100D± 0.006 0.69768 0.011962 0.71772 0.48786 �8, 10� 70 185 4.5240 × 100´C 0.006 0.32956 0.000452 0.08362 0.91978 �9, 10� 150 45 2.8625 × 100D£ 0.006 0.76338 0.021224 0.95508 0.38478 
 

 
Figure 3: The set of extreme supported non-dominated points of min(C(P), D(P)) 

 

In case of considering the operational probability of 
each edge as ��� = �0λ23123, two cases are considered:�

 Case 1: All failure rates are equal. Let λ�� = λ. Then ����, �� is a scaled version of ���, �� , �. �., the two 
networks share � and � and each edge in ����, �� is 
λ times the original distance associated with each 

edge in ���, ��, )��� = λ)��. In this case, we get the 

same optimal solution as the case ��� = �0123 .�
Case 2: Failure rates are not equal. In this case, we 
may get different optimal paths, �. �. , different 
extreme supported ND points for the BSP from that 
of operational probabilities ��� = �0123. Table 3 gives 
the data for this case.  

 

Table 4: The optimal shortest path spanning trees corresponding to the efficient extreme solutions in the decision space 

�145, 375� 

�170, 245� 

�205, 230� 

�405, 215� 

%��� 

(��� 
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 =C =D =µ =¶ =® =¸ =± �1, 2� √ √ √ √ √ √ √ �1, 3� √ √ √ √ √   �1, 4� √ √ √ √ √ √ √ �2, 3�      √ √ �2, 5� √ √ √ √ √ √ √ �2, 7� √ √ √ √ √ √ √ �3, 4�        �3, 5�        �3, 6� √ √ √ √    �3, 8�   √ √ √ √ √ �4, 6�     √ √ √ �4, 9�  √ √ √ √ √ √ �5, 7�        �5, 8�        �6, 8�        �6, 9�        �7, 8� √ √      �7, 10�    √ √ √  �8, 9� √       �8, 10�       √ �9, 10� √ √ √     BC�=� 1250 850 690 655 615 595 570 BD�=� 970 1000 1055 1070 1170 1220 1350 %��� 405 205 205 170 170 170 145 (��� 215 230 230 245 245 245 375 

 
6 Conclusions 
 
In this paper, we considered the minimum cost-
reliability ratio path Problem. The optimal solution of 
the MCRRPP corresponds to a supported extreme 
non-dominated point in the objective space of a 
biobjective shortest path. We used only phase 1 in the 
two phase method for BSP to generate the set of 
supported extreme non-dominated points in the 
objective space. We used the termination criterion 
presented by Ahuja [1] when the optimum solution is 
reached. In the worst case, starting with the supported 
extreme non-dominated point  �]NC, ]D∗� =��= ming∈f ¤BD�=�BC�=�¥ , we will reach the 

point �]C∗, ]ND� = ��= ming∈f ¤BC�=�BD�=�¥. In each simplex 

iteration, the basic entering arc is chosen to be an arc 
with the least ratio between improvement of BD�=� 
and the deterioration of BC�=�, both expressed through 
reduced costs. Whenever, the shortest path from " to # 
changes, another non-dominated point is found. 
In case of using the logarithmic transformation 
between operational probability and edge length, 
which was proposed by Melachrinoudis and Helander 
[19], to calculate for each edge the “artificial” edge 
length )��� = λ��)��  and to define a new network 

����, �� with the same sets of edge attributes costs, ���  and operational probabilities, ��� = �0123� , but its 
edge distances are )��� , ��, �� ∈ � . The optimal 
solution of (8) corresponds to a supported extreme 
non-dominated point of (9). 
An area of future research is the generation of test 
instances and tests the proposed algorithm. Also, a 
comparison of different solution strategies for the 
BSP and investigate their performance on different 
types of networks with the algorithm presented in this 
paper should be developed in the future. 
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