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Abstract: In this paper, we present the following new inequality of �! 

�! > √2�   ����/��
���∑ �(�������)tanh���

�

�������
����∞

���  � ∈ ℕ.  Also, we deduce that the approximation formula 

�! ~√2� ����/� ����∑  
����

����
 �(��,���/�)�

���  has  rate of convergence equal to   ������  for  � = 1, 2, 3, ⋯.  Thus, we 
can choose the approximation formula that we want it convergence to  �!  by a known rate. 
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1  Introduction. 
There are many different upper and lower bounds for 
�!  presented by several authors 
[4, 3, 21, 20, 17, 8, 9]. Most bounds are of the form 

√2�� �
�

�
�

�

���  < �! < √2�� �
�

�
�

�

��� ,       (1) 

Where  ��  and  �� tend to zero through positive 
values. P. R. 
Beesack  [2]  presented the following important 
result: 
Theorem 1. 

√2�� �
�

�
�

�

���  < �! < √2�� �
�

�
�

�

 ���    

  � ≥ 1,                                                           (2) 
where the two sequences ��, �� → 0  as � → ∞ and 
satisfy 

�� − ���� < ∑
�

����

∞
���

�

(����)��  

< �� − ����.                                            (3) 
For the  �-factorial which is defined 
 by  [5] 

[�]�! = ��[� − 1]� ⋯ [2]�[1]�, 

where  [�]� =
����

���
  is the  �-number of �, Mansour  

and et al  [6] presented the following �-analog of the 
Beesack's result (2): 
 
Theorem 2.  The �- factorial [�]�! satisfies the 
double inequality 
 

 
(�, �)∞(1 − �)����� (���) < [�]�! (�; �)∞(1 −

�)��  ���  (���),   � ≥ 1; 0 < � < 1              (4) 
where ��(�)  and ��(�) are two sequences tend to 

zero through  positive values and satisfy 

��(�) − ��(� + 1 ) − log(1 − ��) < ��(�) −

��(� + 1 ),         � ≥ 1.                                     (5) 

Recently, Mansour and et al [7]  presented a new 
proof  of Beesack's result  (2) and deduced the 
following upper bounds of �!: 
Theorem  3.   

�! < √2�� (�/�)� �� �
[�]

        � ∈ ℕ             (6) 

� �
[�]

  =
1

2� + 3
       

�
1

4�
+ �

2� − 2� + 2

2� + 1

�

���

 2���� (2�, � +
1

2
)� 

       � = 1,2, 3, ⋯, 
where  �(�)  is the Riemann Zeta function. 
In this paper, we will use the technique of  [7] to 
introduce a family of lower bounds of  �! . Hence, we 
will deduce some new approximation formulas for 
large �! and we will study their rates of convergence. 
 
2 A New family of lower bounds of �! 
To find some lower bounds of the series 

∑
�

����

∞
���

�

(����)��  we observe firstly that 

�
1

2� + 1

∞

���

1

(2� + 1 )��

> �
1

(2� + 1 )(2� + 1 )��

�

���

 ,    �

= 1,2,3, ⋯ 
So, we can consider the recurrence relation 

��,� − ����,� = �

1

(2� + 1 )(2� + 1 )��
,

    � = 1,2,3, ⋯       (7)

�

���

 

which has the following solution form 
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��,� = ��,� − � ��
1

(2� + 1 )(2� + 1 )��

�

���

�

���

���

 

= ��,� − �
1

2� + 1
��

1

(2� + 1) ��

���

���

�

�

���

. 

By using the relation [18] 

�
1

(2� + 1) ��
= −1 − (2��� − 1)�(2�)

���

���

− 2����(2�, � + 1/2) 

= −1 −
(��)���(�����)

�(��)!
������ + 2 ����(2�, � + 1/2) 

where  �(�) is the Riemann Zeta function and  ��
′ �  

are Bernoulli's numbers, we get 

��,� = ��,� + �
1

2� + 1

�

���

�1

+
(−1)���(1 − 2��)

2(2�)!
 ������

+ 2 ����(2�, � + 1/2 )� . 

Also 

�
1

(2� + 1) ��

∞

���

=
(−1)���(2�� − 1)

2(2�)!
������ − 1. 

Hence, we can choose 

��,� = �
1

2� + 1

�

���

(�(2�)(1 − 2���) − 1), 

                                                                             (8) 
which satisfies 

lim
�→∞

   ��,� = 0,     � = 1,2,3, ⋯. 

Then we obtain the following result: 
 
Theorem  4.   

�! > √2�  ���
�
� �

���∑
����

����
����.��

�
�

��
���   

   �, � ∈ ℕ                                                     (9) 
where   �(�) is the Riemann Zeta function. 
In the following result, we will prove that the 
increasing of the value of � in the lower bound ��,� 
will improve its value. 
 
Lemma 2.1. 
��,��� > ��,�            �, � = 1,2,3, ⋯..      (10) 
Proof. 
From  [9] we get 

��,��� = �
2���

2� + 1
�(2�,

� + 1

2

���

���

) 

             = ��,� +
������

����
�(2� + 2, � + 1/2 ). 

But  ��2� + 2, � +
�

�
� > 0,   then 

��,��� − ��,� > 0. 

 
Theorem 5. 

�! >   √2� ����/�   

   �
���∑ �(�������)tanh���

�

�������
����∞

���     � ∈ ℕ (11 ) 
Proof.  Using (9) at � tends to ∞, we obtain 

��,∞ = �
2���

2� + 1

∞

���

�(2�, � + 1/2 ). 

But 

�(2�, � + 1/2 ) = �
1

(� + 1/2  + � )��

∞

���

, 

then 

��,∞ = � �
1

(2� + 2� + 1 ��(2� + 1)

∞

���

∞

���

. 

Using the relation 

tanh��� = �
�����

2� + 1

∞

���

;          |�| < 1, 

then we get 

��,∞ = � �
(2� + 2� + 1 )tanh��   

 ((2� + 2� + 1) ��) − 1
�

∞

���

. 

 
3 Convergence rate of the approximation formula 

�! ~√�� ����/�����∑
����

����
�(��,���/�)�

��� . 
C. Mortici [10]—[16] presented a new method to 
measure the convergence rate of some asymptotic 
expansions. Also, he use this method to accelerate 
and construct some approximation formulas. The 
following lemma contains the Mortici result. 
 
Lemma 3.1. 
If  (��)���  is convergent to zero and there exists the 
limit 

lim
�→∞

��(�� − ����) = � ∈ ℝ            (12) 

with  � > 1,  then there exists the limit: 

lim
�→∞

���� �� =
�

� − 1
 

To measure the convergence rate of the formula  

√2�� (�/�)����,�, define the sequence  (��)���  by 
the relation 

�! = √2�� (�/�)����,���� ;    � = 1,2,3, ⋯  (13) 
The value of the approximation formula will be better 
whenever (��)��� convergence to zero faster. Using 
the  relation (13) we get 

�� = ln �! − ln√2� − (� + 1/2 ) ln � + � − ��,�  
And hence 
�� − ���� = (� + 1/2 ) ln(1 + 1/� ) − 1 +
����,� − ��,�.  
By using the expansion  [1] 

(� + 1/2 ) ln�1 +
�

�
� − 1 = ∑

�

����

�

(����)��
∞
���    (14) 

and the relation  [7], we have 
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�� − ���� = �
1

(2� + 1 )(2� + 1 )��
.

∞

�����

 

Then 

lim
�→∞

��(���)(�� − ����) =
1

(2� + 3 )2�(���) ;

  �, � = 1,2,3, ⋯     (15)

 

Now we get the following result according Mortici 
result: 
 
Theorem 6. The rate of convergence of the sequence 
��   is equal  to  ������  , since  

lim
�→∞

����� �� =
1

(2� + 1 )(2� + 3)2 �(���)
. 
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