Study of Beta 2 Glycoprotein 1 Antibodies in HCV Positive Patients on HD and Its Relation to Vascular Access Thrombosis

Mohamed A. Ibrhaim; Mona H. Abdel Salam and Walid A. Bichari

Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt Elhamed 3@yahoo.com

Abstract: Background: Although the precise physiological role of B2-GPI is not known. B2-GPI has been shown to inhibit intrinsic pathway activation and prothrombinase activities. Hemodialysis access failure is a leading cause of morbidity and hospitalization for patients with end-stage renal disease. Patients and methods: our study was conducted on forty patients under regular hemodialysis randomly selected from hemodialysis units of Ain Shams University Hospitals. Patients were divided into Group A: 20 patients with positive hepatitis C virus antibodies, and group B: 20 patients with negative hepatitis C virus antibodies. All patients were subjected to: full clinical examination, routine CBC, ESR and quantitative CRP, routine chemistry including (BUN, serum creatinine), serum Na, serum K, serum Ca, serum PO4, serum albumin, and total proteins. Liver enzymes (AST, ALT), routine coagulation profile (PT, INR, PTT), HBsAG and HCVab, B2 glycoprotein I antibodies IgM, IgG titers by ELISA and assessment of fistula flow by Doppler ultrasound were also done. Results: We found that the frequency of B2IgM and B2IgG positive or borderline in group A was 20 % (4 patients), 25% (5 patients) respectively while the frequency of B2 IgM and B2IgG in group B was 30% (6/20 patients), 35% (7/20 patients) respectively. No relation was found between B2-glycoprotein I antibodies and HCV in prevalent hemodialysis patients. Our study revealed the frequency of B2 IgM was 40% and B2 IgG was 40% positive or borderline in patients with AVF with positive history of vascular access occlusion. Elevated B2GPI IgM titre is associated with decreased fistula volume of flow by Doppler. [Mohamed A. Ibrhaim; Mona H. Abdel Salam and Walid A. Bichari. Study of Beta 2 Glycoprotein 1 Antibodies in HCV Positive Patients on HD and Its Relation to Vascular Access Thrombosis. Life Sci J 2012; 9(3):282-292]. (ISSN: 1097-8135). http://www.lifesciencesite.com.39

Key words: Beta2glycoprotein1 antibodies – HCV- HD – Vascular access thrombosis.

1. Introduction:

Beta 2 glycoprotein 1 (beta 2 GP1, also called apolipoprotein H) is a 326 amino acid synthesized by hepatocytes, endothelial cells and trophoblast cells (1).

 B_2GP_1 , *in vitro* studies suggest that it likely functions as a natural anticoagulant. B_2GP_1 has been shown to inhibit intrinsic pathway activation and prothrombinase activities on the surface of activated platelets and synthetic phospholipids vesicles. B_2GP_1 also inhibits the activity of activated protein C on procoagulant surfaces. B_2GP_1 inhibits ADP-induced platelet aggregation (2).

 B_2GP_1 has become well-known as a co-factor for anticardiolipin auto-antibodies. Autoantibodies against B_2GP_1 are described for various autoimmune disease. The presence of anti- B_2GP_1 antibodies can be related to the development of arterial and venous thromboses, venous thromboembolism, thrombocytopenia and fetal loss. Anti- B_2GP_1 antibodies are found in the immunoglobulin classes IgG, IgM and IgA (3).

Anti- B_2GP_1 IgG antibody titers correlate well with the clinical status of the patients in thrombosis, thromboembolism and repeated fetal loss, while anti- B_2GP_1 IgM antibodies show significant association with thrombosis and thrombocytopenia(3).

Sands et al. (2001)(4) showed that haemodialysis patients had elevated anti-B₂GP₁ antibodies and patients with PTFE grafts had elevated antibodies most frequently versus fistulas and tunneled catheters and this study concluded that haemodialysis patients with PTFE grafts frequently have elevated antibodies to beta 2 GP₁ and the presence of elevated antibody levels is associated with an increased thrombotic risk.

Previously, there were attempts to detect anticardiolipin antibodies IgM, IgG in HCV positive hemodialysis patients. However, the relation between its presence and thrombotic events including fistula thrombosis was not proved. Elevated IgM aCL titer was present in 17.4% of chronic HD patients. Results suggest recurrent vascular access thrombosis of synthetic or native fistula may not be caused by elevated IgM-aCL (IgM-anticardiolipin antibody) titer in these patients (5).

Ozmen *et al.* (2009)(6), showed that prevalence of IgG-aCL (IgG-anticardiolipin antibody) in chronic HD patients was 14.6% and no patient had a positive value of the IgM-aCL test.

2. Patients and Methods

This study was conducted on forty patients with ESRD on regular hemodialysis (3 sessions per week) randomly selected from hemodialysis units of Ain Shams University Hospitals between September 2010 and September 2011. The patients were divided into 2 groups:

- **Group A:** 20 patients with positive hepatitis C virus antibodies.
- **Group B:** 20 patients with negative hepatitis C virus antibodies.

We excluded from the study ESRD patients on regular hemodialysis having diabetes mellitus, collagen disorders, coagulation abnormality other than that associated with chronic liver disease including drug induced liver disease. Smokers were excluded from the study.

All patients were subjected to full clinical examination including vascular access examination (synthetic or native fistula or catheter).

Routine complete blood count (CBC), ESR and quantitative CRP, BUN, serum creatinine, serum Na, serum K, serum Ca, serum PO_4 , serum albumin, total proteins, liver enzymes (serum ALT, serum AST), routine coagulation profile (PT, INR, PTT), HBsAg and HCVab, B₂ glycoprotein I antibodies IgM, IgG titer by ELISA.

Methods:

All routine investigations were done by conventional methods at Ain Shams University Hospital laboratories.

Beta-2 glycoprotein I estimation principle of the test

Highly purified beta-2 glycoprotein I is bound to microwells. Antibodies against this antigen, if present in diluted serum or plasma, bind to the respective antigen. Washing of the microwells removes unspecific serum and plasma components. Horseradish peroxidase (HRP) conjugated anti-human IgA immunologically detects the bound patient's antibodies forming a conjugate/antibody/antigen complex washing of the microwells remove unbound conjugate.

An enzyme substrate in the presence of bound conjugate hydrolyzes to form a blue colour. The addition of an acid stops the reaction forming a yellow end-product. The intensity of this yellow colour is measured photometrically at 450 nm.

The amount of colour is directly proportional to the concentration of IgA antibodies present in the original sample.

Interpretation of results Quality control:

This test is only valid if the optical density at 450 nm for positive control (1) and negative control (2) as well as for the calibrators A and F complies with the respective range indicated on the quality control certificate enclosed to each test kit. If any of these criteria is not fulfilled, the results are invalid and the test should be repeated.

Interpretation of results

In a normal range study with serum samples from healthy blood donors, the following ranges have been established with the anti-beta-2- glycoprotein I test.

Anti-beta-2 glycoprotein I Ab IgM, IgG (U/ml)

Normal: < 5 Borderline: 5-8 Positive: > 8

Statistical analysis of data

T-test and paired t-test were used to compare means of parametric data group while Mann Whitney test was used for the non parametric data.

Pearson chi-square correlation test were used to correlate parametric values and spearman correlations was used for the non parametric data.

3. Results

Participants in group A were 16 females (80%) and 4 males (20%). The available access was natural arteriovenous fistula (AVF) in 17 patients, polytetrafluoroethylene (PTFE) grafts in 2 patients and cuffed catheter in 1 patient.

Participants in group B were 13 females (65%) and 7 males (35%), two patients had a history of cerebrovascular stroke and B₂-GPI was negative, one patient with DVT with borderline B₂ IgG-1. Two patients died after termination of our study (one was due to pulmonary edema and the other was due to hematemesis).

HCV PCR done for patients with negative HCV antibody with positive B₂-GPI antibody, was found to be negative. Patients were further classified into 2 equal groups according to vascular access occlusion:

First group: Patients having positive history of vascular access occlusions (group C).

Second group: Patients having negative history of access (occlusion (group D).

4. Discussion

Antiphospholipid (aPL) antibodies (Abs) were discovered in 1952 in patients suffering from systemic lupus erythematosus (SLE), it has the ability to prolong coagulation time in vivo from which the name lupus anticoagulant (LA) arose (7).

Later on, it was discovered that aPL do not act as anticoagulants in vivo, and can be found not only in SLE patients but also in apparently healthy individuals (8).

At the beginning of the 1990s, beta-2 glycoprotein 1 (B2-GPI) was shown to be a major antigen for antiphospholipid antibodies. Although anticardiolipin antibodies (aCL) Abs and Abs against B₂-GPI (anti-B₂-GPI Abs) often coexist, they are not identical.

Interestingly, the highest risk of thrombosis was associated with the presence of both LA with anti-B₂GPI.

Table (1	1):	Com	parison	of	juanti	tative	variable	es in	group (Α) and	group) (]	B)
(0 1	.	/	0 1	· · ·	

· · · · ·	HCV state	N	Mean	SD	t*	P-value	Sig.
	HCV+ve (group A)	20	47.65	±12.571	0.147	>0.05	NC
Age in years	HCV-ve (group B)	20	47.05	±13.153	-0.147	>0.03	INS
Systolic B.P. in	HCV+ve (group A)	20	124.500	± 19.86136	0.702	>0.05	NC
mmHg	HCV-ve (group B)	20	130.000	± 23.84158	0.795	>0.03	IN S
Diastolic b.P. in	HCV+ve (group A)	20	77.00	± 10.31095	0.000	>0.05	NC
mmHg	HCV-ve (group B)	20	77.000	± 11.74286	0.000	>0.03	INS
WDag 10 ⁶ /amm	HCV+ve (group A)	20	6.220	± 2.3761	0.276	>0.05	NC
WBcs 10 ⁷ /cmm	HCV-ve (group B)	20	6.500	±2.3317	0.570	~0.03	113
UCD in mmUa	HCV+ve (group A)	20	10.450	± 1.9503	0.086	>0.05	NS
	HCV-ve (group B)	20	9.895	±1.5906	-0.980	-0.03	113
DIT $10^6/amm$	HCV+ve (group A)	20	218.45	±68.241	0.800	>0.05	NC
PL1 10 / Chillin	HCV-ve (group B)	20	239.10	± 76.730	0.899	-0.03	113
DUN ma/dl	HCV+ve (group A)	20	61.35	± 27.601	0.841	>0.05	NS
BOIN ing/ui	HCV-ve (group B)	20	67.85	± 20.790	0.641	>0.05	113
Creat ma/dl	HCV+ve (group A)	20	7.74	±2.223	2 222	0.032	S
Creat mg/u	HCV-ve (group B)	20	9.45	± 2.606	2.235	0.032	3
Alb am/dl	HCV+ve (group A)	20	3.40	±0.592	1 854	0.071	NS
Alto gill/di	HCV-ve (group B)	20	3.68	±0.299	1.634	0.071	113

* t-test was used

Table (2): Comparison of quantitative variables in group (A) and group (B) (Cont..)

	HCV state	Ν	Mean	SD	t*	P-value	Sig.
No mog/l	HCV+ve (group A)	20	136.75	5.025	1.007	>0.05	NC
na meq/1	HCV-ve (group B)	20	138.10	3.275	1.007	>0.03	IN S
K meq/l	HCV+ve (group A)	20	5.205	0.7287	0.414	>0.05	NS
	HCV-ve (group B)	20	5.315	0.9382	0.414	-0.03	IND
Ca mg/dl	HCV+ve (group A)	20	8.575	0.8058	0 728	>0.05	NS
	HCV-ve (group B)	20	8.790	1.0467	0.728	-0.05	183
Po4 mg/dl	HCV+ve (group A)	20	4.295	1.5463	2 505	0.017	c
	HCV-ve (group B)	20	5.415	1.2671	2.303	0.017	3
Ast	HCV+ve (group A)	20	19.40	6.44	0.250	> 0.05	NC
IU	HCV-ve (group B)	20	21.05	27.757	0.239	> 0.03	113
Alt	HCV+ve (group A)	20	17.30	5.222	221	>0.05	NC
IU	HCV-ve (group B)	20	16.35	18.488	221	-0.03	113
Total bilirubin	HCV+ve (group A)	20	0.69	0.268	1 402	>0.05	NS
mg/dl	HCV-ve (group B)	20	0.83	0.323	1.495	-0.05	113
INR	HCV+ve (group A)	20	1.0035	0.05284	1 1 4 4	>0.05	NC
	HCV-ve (group B)	20	0.9850	0.04936	-1.144	-0.03	IND
PTT sec	HCV+ve (group A)	20	35.805	7.6490	0 127	>0.05	NC
	HCV-ve (group B)	20	36.200	10.3417	0.137	-0.05	183
Doppler flow	HCV+ve (group A)	20	740.865	134.3721	624	>0.05	NC
ml/min n=17	HCV-ve (group B)	20	706.824	180.2599	024	-0.03	IND
Intradialytic	HCV+ve (group A)	20	2.7250	1.19731	1 167	>0.05	NS
weight gain	HCV-ve (group B)	20	2.300	1.10501	-1.107	-0.03	110

* t-test was used

Table (3): Comparison of group (A) and group (B) as regard ESR and CRP

	HCV state	Ν	Median	Std. Error of Mean	Mann Whitney*	<i>P</i> -value	Sig.
Duration of	HCV+ve (group A)	2	14	10	0.827	>0.05	NC
hemodialysis n =20	HCV-ve (group B)	3	13	7	0.694	>0.03	IN S
ESR 1 st hour	HCV+ve (group A)	20	47.75	46.693	199.000	>0.05	NS
	HCV-ve (group B)	20	38.60	31.149			
CRP mg/dl	HCV+ve (group A)	20	11.70	20.275	165.000	>0.05	NS
	HCV-ve (group B)	20	9.30	5.667			

*Mann Whitney u test was used was used

			HCV state				P value	Sig.
		Pos	Positive A		ative B	chi-	> 0.05	
_		No.	Percent	No.	Percent	square test*	NS < 0.05 S	
B2 IgM u/ml	Negative Positive	16 4	80% 20	14 6	70% 30	0.533	0.465	NS
B2-IgG u/ml	Negative Positive	15 5	75 25	13 7	65 35	0.476	0.490	NS

Table (4): Comparison of group (A) and group (B) as regard B2 IgM and B2 IgG:

* Chi square test was used

No statistical significance as regard correlation between b2 glycoprotein antibodies IgM, IgG and HCV state (positive or negative) (p value > 0.05).

Table (5): Comparison of group (A) and group (B) as regard B2 IgM and B2 IgG tire.

		HCV	State		Value of	P value	Sig.
	Posi	tive A	Nega	tive B	chi-	> 0.05	
	Median	Std. error	Median	Std. error	square test*	NS < 0.05 S	
B2 IgM titre u/ml	3.000	0.6729	4.000	1.1056	143.000	.120	NS
B2-IgG titre u/ml	3.75	0.268	4.00	0.447	161.500	.293	NS

* Mann Whitney u test was used

No statistical significance as regard correlation between b2 glycoprotein antibodies IgM, IgG and HCV state (positive or negative) (p value > 0.05).

Table ((6):	Risk	estimation	via	odds	ratio	for:	B2	IgM	&	B2	IgG	positive	or	borderline

	Odds ratio	95% confide	ence interval
		Lower	Upper
B2 IgM u/ml (negative/positive)	0.583	0.136	2.498
B2 IgG u/ml (negative/positive)	0.619	0.158	2.429

This table 3.10 shows that:

B2 IgM negative is more likely to be among group A "HCV +ve patients" than B "HCV –ve patients" by a ratio of 0.583. B2 IgG negative is more likely to be among group group A "HCV +ve patients" than B "HCV –ve patients" by a ratio of 0.619.

 Table (7): Correlation between B2-IgM, B2-IgG and other variables in HCV +ve (group A)

	B2-Ig	gM titre u/ml		B2-I	gG tire u/ml	
	*r value	P value	Sig.	*r value	P value	Sig.
Age (years) (n=20)	-0.027	0.911	NS	0.103	0.667	NS
Duration of hemodialysis "n=30" in years	-0.081	0.735	NS	0.195	0.41	NS
Systolic BP "n=20" in mmHg	-0.329	0.157	NS	0.197	0.406	NS
Diastolic BP " $n = 20$ " in mmHg	-0.241	0.306	NS	0.276	0.239	NS
Wbc "n=20" 10 ⁶ /cmm	-0.342	0.14	NS	-0.112	0.639	NS
Hb ''n=20" gm/dl	0.229	0.332	NS	0.251	0.286	NS
Plt "n=20" 10 ⁶ /cmm	-0.067	0.779	NS	-0.062	0.794	NS
BUN "n=20" mg/dl	0.168	0.48	NS	-0.507(*)	0.027	S
Cr 'n=20" mg/dl	-0.167	0.481	NS	-0.494(*)	0.027	S
Albumin "n=20" gm/dl	-0.186	0.432	NS	0.22	0.352	NS
Na "n=20" meq/L	0.142	0.551	NS	-0.219	0.354	NS
K 'n = 20" meq/L	0.142	0.551	NS	-0.219	0.354	NS
Ca "n=20" mg/dl	0.14	0.557	NS	0.383	0.096	NS
Po4 "n=20" mg/dl	0.248	0.291	NS	-0.046	0.849	NS
Ast IU	0.391	0.089	NS	-0.108	0.651	NS
Alt IU	0.281	0.23	NS	0.039	0.869	NS

* Spearman test was used

Table (8):	Correlation between	n B2-IgM. B2-I	gG and other	variables in HCV	+ve (group)	A) (Cont)
		ω,	0) ()

	<u> </u>					
	B2-	IgM titre u/ml		B2	-IgG tire u/ml	
	*r value	<i>P</i> value	Sig.	*r value	P value	Sig.
Bil total mg/dl	0.463	0.04	S	-0.018	0.941	NS
INR	0.348	0.133	NS	0.012	0.959	NS
PTT sec	0.121	0.61	NS	0.176	0.459	NS
ESR 1 st hour	0.225	0.341	NS	0.057	0.81	NS
CRP mg/dl	-0.258	0.272	NS	0.07	0.77	NS
Doppler flow ml/min n=17	-0.209	0.420	NS	-0.271	0.292	NS
B2-IgG u/ml	0.142	0.55	NS			

* Spearman test was used **Table (9):** Correlation between B2-IgM, B2-IgG and other variables in HCV -ve (group B)

	B2-IgM titre u/ml			B2-	IgG tire u/ml	
	*r value	P value	Sig.	*r value	P value	Sig.
Age (years) (n=20)	-0.187	0.431	NS	-0.31	0.183	NS
Duration of hemodialysis "n=30" in years	0.396	0.084	NS	-0.198	0.402	NS
Systolic BP "n=20" in mmHg	0.142	0.55	NS	0.437	0.054	NS
Diastolic BP "n = 20" in mmHg	-0.045	0.849	NS	0.312	0.181	NS
Wbc "n=20" 10 ⁶ /cmm	0.21	0.35	NS	0.373	0.106	NS
Hb ''n=20" gm/dl	-0.119	0.617	NS	0.092	0.699	NS
Plt "n=20" 10 ⁶ /cmm	0.252	0.283	NS	0.122	0.61	NS
BUN "n=20" mg/dl	0.407	0.075	NS	0.246	0.296	NS
Cr 'n=20" mg/dl	0.127	0.594	NS	-0.221	0.348	NS
Albumin "n=20" gm/dl	-0.301	0.197	NS	-0.127	0.593	NS
Na "n=20" meq/L	-0.136	0.567	NS	-0.016	0.945	NS
K 'n = 20" meq/L	0.151	0.526	NS	-0.243	0.302	NS
Ca "n=20" mg/dl	0.278	0.235	NS	0.169	0.477	NS
Po4 "n=20" mg/dl	-0.108	0.651	NS	0.017	0.942	NS
Ast IU	0.198	0.403	NS	0.224	0.342	NS
Alt IU	0.325	0.162	NS	0.169	0.476	NS
Bil total mg/dl	0.161	0.497	NS	0.221	0.35	NS
INR	-0.174	0.464	NS	-0.417	0.068	NS

* Spearman test was used **Table (10):** Correlation between B2-IgM, B2-IgG and other variables in HCV -ve (group B) (Cont...)

	B2-IgM titre u/ml			B2-IgG tire u/ml			
	*r value	P value	Sig.	*r value	P value	Sig.	
PTT sec	0.046	0.848	Ns	-0.148	0.533	NS	
ESR 1 st hour	0.318	0.172	NS	-0.181	0.444	NS	
CRP mg/dl	0.062	0.796	NS	0.03	0.901	NS	
Doppler flow ml/min n=17	-0.254	0.326	NS	-0.028	0.914	NS	
B2-IgG u/ml	0.26	0.268	NS	0.26	0.268	NS	

* Spearman test was used

Table (11):Comparison of quantitative variables in patients with positive and negative history of vascular access occlusion

	HCV state	Ν	Mean	SD	t*	P-value	Sig.
A in	Positive	20	45.45	12.672	0.045	> 0.05	NG
Age in years N	Negative	20	49.25	12.769	0.945	>0.05	NS
Systolic B.P. in	Positive	20	124.000	21.373	0.040	>0.05	NC
mmHg	Negative	20	130.500	22.354	0.940	20.05	IND
Diastolic b.P. in	Positive	20	76.00	10.9544	0.575	>0.05	NC
mmHg	Negative	20	78.00	11.050	0.375	20.05	IND
WDas 10 ⁶ /amm	Positive	20	6.550	2.5264	0.511	>0.05	NC
wBcs 10 /cmm	Negative	20	6.170	2.1599	-0.311	20.05	IND
UCD in mmUg	Positive	20	9.985	1.4339	0.662	>0.05	NG
TIOD III IIIIIIIg	Negative	20	10.360	2.0894	0.002	20.05	IND
$\mathbf{DI} \ge 10^6/\text{amm}$	Positive	20	217.70	71.506	0.066	>0.05	NG
FL1 10/clilli	Negative	20	239.85	73.467	-0.900	-0.05	IND
DUN mg/dl	Positive	20	64.70	24.883	0.026	>0.05	NG
BOIN ilig/ul	Negative	20	64.50	24.436	-0.020	-0.05	IND
Creat ma/dl	Positive	20	8.47	2.747	0.205	>0.05	NS
Cicat ing/ui	Negative	20	8.71	2.386	0.295	20.05	140
Alb am/dl	Positive	20	3.50	0.358	0.486	>0.05	NS
Alo gill/di	Negative	20	3.58	0.590	0.480	20.05	140
Intradialytic weight	Positive	20	2.600	1.11921	0.473	>0.05	NS
gain	Negative	20	2.425	1.21693	-0.473	-0.05	140

* t-test was used

	HCV state	Ν	Mean	SD	t*	<i>P</i> -value	Sig.
No mog/I	Positive	20	136.90	4.941	0.770	>0.05	NC
Na meq/L	Negative	20	137.95	3.456	0.779	>0.03	IND
K meq/L	Positive	20	5.325	0.8608	0.400	>0.05	NC
	Negative	20	5.195	0.8172	-0.490	20.05	IND
Ca mg/dl	Positive	20	8.755	1.1532	0.490	>0.05	NC
	Negative	20	8.610	0.6545	-0.469	>0.03	IND
Po4 mg/dl	Positive	20	4.655	1.2458	0.827	>0.05	NC
	Negative	20	5.055	1.7380	0.857	20.05	110
Ast	Positive	20	23.55	27.657	1.056	>0.05	NS
IU	Negative	20	16.90	5.281	-1.050	>0.05	145
Alt	Positive	20	20.05	18.193	1 5 4 7	>0.05	NS
IU	Negative	20	13.60	4.083	-1.347	>0.03	IND
Total bilirubin	Positive	20	0.82	0.341	1 270	>0.05	NS
mg/dl	Negative	20	0.70	0.250	-1.270	-0.03	IND
INR	Positive	20	0.9890	0.05848	0.642	>0.05	NS
	Negative	20	0.9995	0.04395	0.042	-0.03	IND
PTT sec	Positive	20	38.665	11.6042	1.040	>0.05	NS
	Negative	20	33.340	3.9948	-1.940	-0.03	IND
Doppler flow	Positive	20	383.514	177.9665	1 260	>0.05	NS
ml/min n=17	Negative	20	752.075	139.2072	1.200	-0.05	IND

 Table (12): Comparison of quantitative variables in patients with positive and negative history of vascular access occlusion (cont...)

* t-test was used

Table (13): Comparison of patients with positive and negative history of vascular access occlusion as regard ESR and CRP:

	History of vascular access occlusion	Ν	Median	Std. error of mean	t*	<i>P</i> value	Sig.
ESR 1 st hour	Positive	20	46.85	41.808	-0.584	>0.05	NS
	Negative	20	39.50	37.658			
CRP mg/dl	Positive	20	9.60	6.573	0.382	>0.05	NS
	Negative	20	11.40	20.033			

*t-test was used

 Table (14): Comparison of patients with positive and negative history of vascular access occlusion as regards B2-IgM and B2-IgG

		Positive history vascular access occlusion "n=20"		Negative vascular ac "n	e history of cess occlusion =20"	*Value of chi-square test*	P value	Sig.
		No.	Percent	No.	Percent			
B2 IgM	Negative < 5	12	60	18	90	4 800	0.029	S
u/ml	Positive ≥ 5	8	40	2	10	4.800	0.028	3
B2-IgG	Negative < 5	12	60	16	80	1 005	0.169	NS
u/ml	Positive ≥ 5	8	40	4	20	1.903	0.108	113

* Chi-square test was used

Table (15): Comparison of group (A) and group (B) as regard B2 IgM and B2 IgG tire.

		Vascular a	access state	*Volue of			
	Positive hist access occlu	ory vascular ision "n=20"	Negative his access occlu	tory vascular ision "n=20"	Mann- Whitney II	P value	Sig.
	Median	Std. error	Median	Std. error	winning 0		
B2 IgM u/ml	4.000	1.1349	3.000	0.5781	121.000	0.031	S
B2-IgG u/ml	4.00	0.335	4.00	0.414	176.00	0.512	NS

* Mann Whitney u test was used

1 able (16): Risk estimation via odds ratio for B2 IgM & B2
--

	Odds ratio	95% confide	ence interval
		Lower	Upper
B2 IgM u/ml (negative/positive)	6.00	1.082	33.274
B2 IgG u/ml (negative/positive)	2.667	0.648	10.972

B2 IgM positive is more likely to be among patients with positive history of vascular access occlusion than patients with negative history of vascular access occlusion by a ratio of 6.

So patients with positive B2 IgM have the risk of thrombosis 6 times than individuals with negative B2-IgM. B2 IgG positive more likely to be among patients with positive history of vascular access occlusion than patients with negative history of vascular access occlusion "by a ratio of 2.3.

Odds ratio for: B2 IgM and B2 IgG in patients with positive and negative history of vascular access occlusion.

Table (17): Correlation between B2-IgM and other variables in patients with positive history of vascular access occlusion (group C)

	B2-IgM titre u/ml			B2-I	-IgG tire u/ml		
	*r value	P value	Sig.	*r value	P value	Sig.	
Age (years) (n=20)	0.016	0.945	NS	0.137	0.565	NS	
Duration of hemodialysis "n=30" in years	0.112	0.637	NS	-0.357	0.122	NS	
Systolic BP "n=20" in mmHg	-0.062	0.795	NS	0.336	0.148	NS	
Diastolic BP " $n = 20$ " in mmHg	-0.05	0.834	NS	0.423	0.063	NS	
Wbc "n=20" 10 ⁶ /cmm	-0.004	0.986	NS	0.176	0.459	NS	
Hb "n=20" gm/dl	0.011	0.963	NS	0.225	0.341	NS	
Plt "n=20" 10 ⁶ /cmm	0.152	0.523	NS	0.026	0.914	NS	
BUN "n=20" mg/dl	0.29	0.216	NS	-0.408	0.074	NS	
Cr 'n=20" mg/dl	0.12	0.614	NS	-0.347	0.133	NS	
Albumin "n=20" gm/dl	-0.37	0.108	NS	-0.052	0.827	NS	
Na "n=20" meq/L	-0.1	0.675	NS	0.188	0.428	NS	
K 'n = 20" meq/L	0.508	0.022	S	-0.062	0.794	NS	
Ca "n=20" mg/dl	0.162	0.495	NS	0.246	0.297	NS	
Po4 "n=20" mg/dl	0.34	0.143	NS	0.152	0.523	NS	
Ast IU	0.422	0.064	NS	-0.103	0.667	NS	
Alt IU	0.169	0.477	NS	-0.307	0.189	NS	
Bil total mg/dl	0.503	0.024	S	-0.214	0.366	NS	
INR	0.19	0.422	NBS	-0.164	0.489	NS	
PTT sec	-0.065	0.786	NS	0.287	0.22	NS	

* Spearman test was used

Table (18): Correlation between B2-IgM and other variables in patients with positive history of vascular access occlusion (group C) cont)

	B2-IgM titre u/ml			B2-	-IgG tire u/ml	
	*r value	<i>P</i> value	Sig.	*r value	<i>P</i> value	Sig.
ESR 1 st hour	0.222	0.347	NS	0.226	0.339	NS
CRP mg/dl	-0.039	0.87	NS	0.308	0.187	NS
Doppler flow ml/min n=17	0.577	0.031	S	-0.116	0.692	NS
B2-IgG u/ml	0.048	0.842	NS			

*Spearman test was used

Table (19): Correlation between B2IgM, B2IgG and other variables in patient with negative history of vascular access occlusion (group D)

	B2-IgM titre u/ml			B2-I	gG tire u/ml	Sig.			
	*r value	P value	Sig.	*r value	P value	Sig.			
Age (years) (n=20)	-0.07	0.77	NS	-0.288	0.218	NS			
Duration of hemodialysis "n=30" in years	-0.304	0.193	NS	0.143	0.547	NS			
Systolic BP "n=20" in mmHg	0.165	0.487	NS	0.39	0.089	NS			
Diastolic BP " $n = 20$ " in mmHg	-0.024	0.919	NS	0.204	0.388	NS			
Wbc "n=20" 10 ⁶ /cmm	-0.125	0.6	NS	0.174	0.462	NS			
Hb "n=20" gm/dl	0.027	0.909	NS	0.065	0.784	NS			
Plt "n=20" 10 ⁶ /cmm	0.12	0.613	NS	0.104	0.662	NS			
BUN "n=20" mg/dl	0.509	0.022	S	0.176	0.458	NS			
Cr 'n=20" mg/dl	0.157	0.508	NS	-0.099	0.679	NS			
Albumin "n=20" gm/dl	-0.068	0.775	NS	0.251	0.258	NS			
Na "n=20" meq/L	0.28	0.232	NS	-0.35	0.131	NS			
K 'n = 20" meq/L	-0.172	0.469	NS	-0.069	0.771	NS			
Ca "n=20" mg/dl	0.344	0.138	NS	0.311	0.183	NS			
Po4 "n=20" mg/dl	0.149	0.531	NS	0.024	0.919	NS			
Ast IU	-0.025	0.917	NS	0.003	0.999	NS			
Alt IU	-0.061	0.779	NS	0.297	0.203	NS			
Bil total mg/dl	0.131	0.582	NS	0.406	0.076	NS			
INR	0.06	0.801	NS	-0.242	0.304	NS			
PTT sec	-0.088	0.712	NS	-0.341	0.141	NS			

* Spearman test was used

Table (20): Correlation between B2 IgM and other variables in patient with negative history of vascular access occlusion (group D) (cont).

	B2-IgM titre u/ml			B2-IgG tire u/ml				
	*r value	P value	Sig.	*r value	P value	Sig.		
ESR 1 st hour	0.248	0.292	NS	-0.363	0.115	NS		
CRP mg/dl	-0.104	0.662	NS	-0.207	0.381	NS		
Doppler flow ml/min n=17	0.027	0.909	NS	-0.050	0.836	NS		
B2-IgG u/ml	0.19	0.423	NS					

* Spearman test was used

Correlation between B2-IgM and BUN in patients with negative history of vascular access occlusion

IgG Abs, and LA with aCL IgG Abs, when considered separately, venous thrombosis was more strongly related to LA Abs, while arterial thrombosis was more closely associated with aCL (mainly IgG class) and anti-B₂-GPI IgG Abs.

Recent studies have shown a high prevalence of antiphospholipid antibodies (lupus anticoagulant and anticardiolipin antibodies) among patients on hemodialytic treatment (9).

Anticardiolipin antibodies represent a group of antibodies from the family of antiphospholipid antibodies. Antiphospholipid antibodies have been implicated in a variety of diseases bu the exact meaning in uremia is not understood clearly. For some scientists, the presence of anticardiolipin antibodies represent a risk factor for vascular access thrombosis(10).

The B_2 -GPI induced by infections may bind to "self" aPL thus forming an immunogenic complex against which a PL are then produced (11).

aPL have also been found to be raised in a large number of infections diseases, such as syphilis, HIV infection, malaria, leprosy, and viral infections, including hepatitis C (HCV), where they are not usually associated with the clinical complications attributed to them(12).

The prevalence of aPL in infections has mainly been reported for the IgG and IgM isotypes, although a few recent studies have also investigated the IgA isotype in some infections(13).

Vascular access

Thrombosis is a major problem in hemodialysis units, resulting in increased patient morbidity, hospitalization and overall dialysis cost (14).

Despite the great prevalence of HCV among hemodialysis patients, no available study have discussed the relation of HCV and presence of Beta-2-glycoprotein I antibodies and its thrombotic complications including vascular access in hemodialysis patients.

In our study, we assessed the frequency of $\operatorname{anti-B_2}$ glycoprotein I antibodies and its possible relation to thrombotic complications including vascular access dysfunction in hepatitis C seropositive hemodialysis patients in a sample of Egyptian patients on regular hemodialysis.

At present the arteriovenous fistula (AVF) is still considered to be the vascular access of choice (15).

Unfortunately, creation of an AVF is not always possible. Nowadays, polytetrafluoroethylene (PTFE) is the most used graft-material. Unfortunately arteriovenous graft (AVG) appear to be associated with a significantly higher risk of thrombosis and infection as compared with AVF (16).

Both group A (HCV+ve) and group B (HCV-ve) were similar as regard age, sex, duration of hemodialysis and type of vascular access.

Our study revealed the frequency of B_2 -IgM positive or borderline was 25% (10/40 patients) [4/20 HCV +ve patients, 6/20 HCV-ve patients] while the

frequency of B_2 IgG was 30% (12/40 patients) [5/20 HCV +ve patients, 7/20 HCV-ve patients].

This result was different from **Sands** *et al.* (2001)(4), who studied B_2 -GP I antibodies and vascular access thrombosis in hemodialysis patients. The frequency of B_2 -GPI antibodies was 10.2% (9/88 of patients).

In our study, we didn't find a significant difference in B₂-glycoprotein IgM & IgG between HCV +ve patients and HCV-ve patients. This was confirmed by the results of **Leroy** *et al.*, (1998) (17), who performed his study on chronic hepatitis C patients without renal involvement following alpha-IFN and he found similar result as ours and he found no significant difference between treated and control groups as regard B₂glycoprotein I titre.

In HCV infection, anti B₂-GPI independent aCL are reported to be raised in 17-44% of patients, whereas raised anti-B₂-GPI and aPL are seldom found. In small cohort of HCV patients, studying all three aPL isotypes, **Gugliemone** *et al.* (2001)(18) found that 30% were positive for anti-B₂ GPI. Elevated levels of aCL were found by **Ordi-Ros** *et al.* (2000) (19), in 3.3% of patients with HCV infection and these were all beta-2 glycoprotein I (B2-GPI)-independent.

Sthoeger *et al.* **(2000)**(20), found elevated levels of aCL in 44% of HCV patients but once again no relationship to any APS related clinical manifestations were evident.

Dalekos *et al.* (2000)(21) found that 37.3% of their HCV patients in Northern Greece had aCL positivity.

Cacoub *et al.* (2000)(22), studying 321 patients, found aCL positivity in 27% of their patients with chronic HCV infection.

In our study, on comparing HCV positive patients and HCV negative patients as regard inflammatory markers (ESR,CRP), we didn't find a significant difference between the two groups.

This result agrees with that of **Zumrutdal** *et al.* (2007) (23), who had investigated the influence of anti-HCV positivity on markers of malnutrition and inflammation in hemodialysis (HD) patients. Serum levels of CRP and ESR, showed no statistical significant difference between HCV positive and HCV negative patients.

To our knowledge, we are the first to study the level of B_2 glycoprotein I in HCV positive prevalent hemodialysis patients and we found no relation between HCV and B_2 glycoprotein I nor fistula flow.

In our study, we assessed the possible relation of anti- B_2 glycoprotein I antibodies to thrombotic complications including vascular access.

We classified the patients according to history of vascular access occlusion into two groups each of them was 20 patients. The first group had a positive history of vascular access occlusion (group C) and the available vascular access was 14 AVF, 4 PTFE grafts and 2 catheters while the second group had negative history of vascular access occlusion (group D) and the available vascular access was 20 AVF.

In our study, elevated B₂-glycoprotein IgM titre was present in 40% (8/20 in patients with previous vascular occlusion, group C) and 10% (2/20 in patients with no previous vascular access occlusion, group D). On comparing both groups, we found significant association between recurrent vascular access thrombosis and B₂-glycoprotein IgM antibodies (p = 0.028).

This was in contrast to the study done by **Sands** *et al.* (2001)(4), who found elevated, B_2 – glycoprotein antibodies was present in 10.2% (9/88 patients), increased thrombotic rates were not associated with elevated anti-human B₂-GPI antibody level in PTFE.

On the other hand, elevated B_2 -glycoprotein IgG tire was present in 40% (8/20) in patients with previous access occlusion and 20% (4/20) in patients with no previous access occlusion. There was no significant association between recurrent vascular access thrombosis (VAT) and elevated B_2 - glycoprotein IgG antibodies.

This result was similar to that of **Sands** *et al.* (2001)(4), who studied human B_2 -glycoprotein 1 (B_2 – GPI) and found no association between elevated antihuman B_2 – GPI antibody levels and increased thrombotic rates.

In our study, patients having positive B_2 -glycprotein IgM antibodies had thrombotic risk more than 6 folds than negative one and most of them had AVF (6/8) patients, while (2/8) patients had graft.

This result was similar to **Sands** *et al.* (2001)(4), who found that patiens with PTEE grafts and antibodies to one or more of these proteins (prothormbin, factor V, and B_2 -glycoprotein I) plasma proteins had over six fold higher thrombosis rates despite the different type of vascular access.

This difference between our results and **Sands** *et al.* (2001)(4), may be due to the predominance of AVF presence in our patients, and about 50% of our patients are HCV positive, and lastly that our patients are a different population. In addition, **Sands** *et al.* (2001)(4), studied multiple antibodies, his study included diabetic patients, smokers and collagen diseases that are excluded in our study while we studied glycoprotein I IgM, IgG antibodies as separate factor.

In our study on comparing the two groups we found no statistical difference as regards variables especially serum albumin, hemoglobin and intradialytic weight gain despite they are inerinminated in causing recurrent vascular access occlusion.

On the other hand, our results was in contrast to that of **Cheng** *et al.* (2003)(24), who found significant difference as regards serum albumin between patients with recurrent vascular access failure versus patients with longer vascular access survival, being higher in longer vascular access survival patients. In our study, we compared ESR, CRP in patients with positive history of vascular access occlusion and patients with negative history of vascular access occlusion and we found no significant difference between the two groups.

Our results were different from that of **Che** *et al.* (2009) (25), who used Cox regression with adjustments for age, systolic blood pressure and vascular access types, serum C-reactive protein (CRP). These parameters were found to be independently associated with an increased risk for vascular access thrombosis, with a hazard ratio of 1.4 (95% confidence interval: 1.01-1.27, p = 0.017). High serum CRP levels was associated with the development of vascular access thrombosis in chronic HD patients.

Univariate analysis of B₂ glycoprotein I IgM titre with other variables was also assessed in our study, and we found significant negative correlation between volume of flow and B₂-IgM titre (p = 0.03), we concluded that elevated B₂ – GPI IgM titre is associated with decreased fistula volume of flow by Doppler .No related studies had assessed similar relations.

Conclusion:

Our study had showed significant association between recurrent vascular access thrombosis and elevated. B₂-glycoprotein IgM antibodies and negative correlation between volume of flow by Doppler and B₂-IgM titre.

Corresponding author Mona H. Abdel Salam

Internal Medicine Departmrnt, Faculty of Medicine, Ain Shams University, Cairo, Egypt Elhamed_3@yahoo.com

References:

- **1.** Carronti B, Calderaro C, Alessandri C, *et al.* (1999): Beta 2 glycoprotein 1 (beta-2 GP₁) mRNA is expressed by several cell types involved in antiphosholipid syndrome related tissue damage. Clin Exp. Immunol; 115: 214-21.
- 2. Jay A, Mccarty, Marya F, *et al.* (2010): Plasmin cleaved beta-2 glycoprotein 1 is an inhibitor of angiogenesis. Am J Pathol.; 171: 1659-1669, www.patentgenuius.com/patent/7642234.html.
- **3. Kandiah DA and Krillis SA. (1994):** Beta-2 Glycoprotein1. Lupus; 3(4):207-212.
- **4. Sands JJ, Nudo SA, Moore KD,** *et al.* **(2001)**: Antibodies to prothrombin, factor V, and beta-2 glycoprotein/and vascular access thrombosis. AAIO J 47(5): 507-10.
- **5.** Chuang FR, Chen TC, Yang CC, *et al.* (2005): IgM-anticardiolipin antibody and vascular access thrombosis in chronic hemodialysis patients. Ren Fail., 27(1): 25-30.

- **6. Ozmen S, Danis R, Akin D,** *et al.* (2009): Anticardiolipin antibodies in hemodialysis patients with hepatitis C and their role in fistula failure. Clin Nephrol., 72(3): 193-8.
- Swadzba J, Iwaniec T, Szczeklik A, *et al.* (2007): Revised classification criteria for antiphospholipid syndrome and the thrombotic risk in patients with autoimmune diseases. J Thromb Haemost 5: 1883-9.
- 8. Wilson WA, Gharavi AE, Koike T, *et al.* (1999): International consensus statement on preliminary classification criteria for definite antiphospholipid syndrome. Arthritis Rheum., 42: 1309.
- **9.** Daniela M, Domenico L, and Natale S (2006): Coagulation disorders in uremia, seminars in Nephrology, 26(1): 46-51.
- **10. Triplett DA (2002):** Antiphospholipid antibodies. Arch Pathol Lab Med., 126: 1424-1429.
- **11. Shoenfeld Y, Blank M, Krause L (2000):** The relationship of antiphospholipid antibodies to infections do they bind to infecting agents or may they even be induced by them? Clin Exp Rheumatol .,18: 431-2.
- **12.** Loizou S, Singh S, Wypkema E, *et al.* (2003): Anticardiolipin anti-b2-glycoprotein I and antiprothormbin antibodies in black south African patients with infectious disease. Ann Rheum Dis., 62: 1106-1111.
- **13. Zandman G, Blank M, Schoenfeld Y (2002):** Antiphospholipid antibodies and infectious drugs. In: Asherson R, Cervera R, Shoenfeld Y, *et al.*, the antiphospholipid syndrome III. Amsterdam: Elsevier and Science: 343-60.
- 14. Panagoustsos S, Yannatos E, Kantartzi K *et al.* (2003): Vascualr access surveillance and monitoring by using an ultrasound dilution technique, Abstracts from the 6-th BANTAO congress, BANTAO Journal; 1: 76.
- **15. Pisoni R, Young E, Dykstra D** *et al.* **(2002):** Vascular access use in Europe and the United states: resutsl from the DOPPS. Kidney Int; 61: 305-16.
- **16. National Kidney Foundation (2001):** k/DOQI clinical practice guidelines for vascular access. Am J Kidney Dis.; 37(1): S137-S181.

17. Leroy V, Arveix J, Jacob MC, et al. (1998): Prevalence and significance of anticardiolipin, antibeta 2 glycoprotein I and anti-prothrombin antibodies in chronic hepatitis C. Br J Haematol., 101(3): 468-74.

- **18. Gugliemone H, Vitozzi S, Elbarcha O**, *et al.* (2001): Cofactor dependence and isotype distribution of anticardiolipin antibodies in viral infections. Ann rheum Dis., 60: 500-4.
- **19. Ordi-Ros J, Villarreal J, Monegal F,** *et al.* **(2000):** Anticardiolipin antibodies in patients with chronic hepatitis C infection characterization in relation to antiphospholipid syndrome. Clin. Diagn Lab Immunol.; 7: 241-244.
- **20. Sthoeger Z, Fogel M, Smirnov A** *et al.* (2000): Anticardiolipin autoantibodies in serum samples and cryoglobulins of patients with chronic hepatitis C infection; 59: 483-486.
- **21.** Dalekos G, Kistis K, Boumba D, *et al.* (2000): Increased incidence of anti-cardiolipin antibodies in patienst with hepatitsi C is not associated with actinopathogenic link to antiphospholipid syndrome. Eur J Gastroenterol Hepatol., 12: 67-74.
- **22.** Cacoub P, Renou C, Rosenthal E, *et al.* (2000): Extrahepatic manifestations associated with hepatitis C infection. A prospective multicentre study of 321 patients. Medicine (Baltimore); 79: 45-56.
- **23. Zumrutdal A, Ozer B, Singan M, et al. (2007):** Effect of anti-HCV positivity on markers of malnutrition and inflammation in hemodialysis patienst. Ren Fail 29(1): 85-90.
- 24. Cheng Y, Bor J, Cheng L, *et al.* (2003): Significance of platelet activation in vascular access survival of hemodialysis pateints. Nephrol Dial Trnasplant; 18: 947-954.
- **25.** Che-Yi, Msiun J, Liang H, *et al.* (2009): The association between pulse pressure and vascular access thrombosis in chronic hemodialysis patients. Official Journal of the Japanese Society of Hypertension; 32(8): 712-5.

5/12/2012