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Abstract:  This article considers estimation of the unknown parameters for the inverse Rayleigh distribution (IRD) 
based on lower record values. We consider the maximum likelihood (ML) and Bayesian inference of the unknown 
parameters of the model, as well as the reliability and cumulative hazard rate functions. The Bayes estimators are 
obtained relative to both symmetric (squared error) and asymmetric (linear exponential (LINEX)) loss functions. It is 
noticed that the symmetric and asymmetric Bayes estimators are obtained in closed forms.  Bayesian prediction 
interval of the future record values are obtained as well.  Finally, practical examples using real record values are 
given to illustrate the application of the results. 
[A.I. Shawky  and M. M. Badr. Estimations and Prediction from the Inverse Rayleigh Model Based on Lower 
Record Statistics. Life Sci J 2012;9(1):985-990] (ISSN:1097-8135). http://www.lifesciencesite.com. 142 

 
Key words: Bayesian inference; Squared error loss function; LINEX loss function; Maximum likelihood function; 

Reliability; Failure rate; Record values; Inverse Rayleigh  distribution.  
 
AMS Subject Classification: 62B10; 62E20; 62F15; 62G05; 62G30; 62M20. 
 
1. Introduction   
         The Rayleigh distribution is a special case of 
the Weibull distribution, which provides a population 
model useful in several areas of statistics including 
life testing and reliability which age with time as its 
failure rate is a linear function of time. Various 
applications of this distribution are given in Siddiqui 
(1962), Polovko (1968), Gross and Clark (1975) and 
Lee et al. (1980). In the life distribution, if the 
random variable (r.v.) T has Rayleigh distribution, 
then the r.v.  X=1/T has an IRD. The IRD was 
introduced in literature by Trayer (1964) (see, 
Mohsin and Shahbaz (2005)) and it has many 
applications in the area of reliability studies. Voda 
(1972) mentioned that the distribution of lifetimes of 
several types of exponential units can be 
approximated by the IRD and discussed some 
properties of maximum likelihood estimator (MLE) 
of the parameter �. The probability density function 
(p.d.f.) of the IRD  with scale parameter � is 

���;  �� � 	

��  � �

�� , �, � � 0,                          (1.1) 

and a cumulative distribution function (c.d.f.) 

���;  �� �  � �
�� , � � 0, � � 0.                     (1.2) 

         The reliability, failure rate and the cumulative 
failure rate (hazard rate) functions of IRD are given, 
respectively, by 

���;  �� � 1 � ���;  �� � 1 �  � �
�� ,              (1.3) 

���;  �� � ���; 
�
���; 
�,                                                 (1.4) 

 ��;  �� � � ln ���� � � ln #1 �  � �
��$ .       (1.5) 

Record values are important in many real-life 
situations involving data relating to weather, sports, 
economics, and life-tests. The statistical study of 
record values have been pursued in different 
directions by several  authors; see,  Nagaraja  (1988), 
Ahsanullah (1995)   and  Arnold  et  al. (1998). Some 
inferential methods based on record values for the 
Rayleigh and Weibull, generalized Pareto, Lomax, 
generalized exponential and power function 
distributions are studied by Balakrishnan and Chan 
(1993), Sultan and Moshref (2000), Sultan et  al. 
(2001), Raqab (2002) and Sultan et  al. (2002). 
Moreover, Abd-El-Hakim and Sultan (2001) have 
obtained the maximum likelihood estimators 
(MLE’s) of Weibull parameters based on record 
values. Also, Shawky and Bakoban (2010) have 
derived moments and moment generating functions 
from EG distribution and have made some statistical 
inferences based on record values. 
         In this paper, Bayesian and non-Bayesian 
estimators are derived for scale parameters, reliability 
and failure rate functions based on lower record 
values from IR distribution. Soliman et  al. (2010) 
discussed the same problem with different prior 
distribution and another technique.  
         Now, let %&' , ( ) 1* be an infinite sequence of 
i.i.d. random variables from an absolutely continuous 
distribution function � , and probability density 
function �.  Let  &+:- denote the ith order statistic of 



http://www.lifesciencesite.com)                                                 1(9;2201 Life Science Journal 

  

986 
  

the random sample &., &	 , … , &- ,  and �+:-  be its 
cumulative distribution function. Let 01 �
min%&., &	, … , &1* , 4 ) 1. We say that &- is a lower 
record value of this sequence if  0- 5 0-�., 6 ) 2. By 
definition, &.  is a record value. Let 8�(� �
min96: 6 � 8�( � 1�, &- 5 &:�'�.�; , ( ) 2  with 
8�1� � 1. Then &:�'�, ( ) 1, denotes the sequence of 
lower record values. From the above definition, the 
sequence of record statistics can be viewed as order 
statistics from a sample whose size is determined by 
the values and the order of occurrence of the 
observations. 
         In Bayesian estimation, we consider two types 
of loss functions. The first is the squared error loss 
function (quadratic loss) which is classified as a 
symmetric function and associates equal importance 
to the losses for overestimation and underestimation 
of equal magnitude. The second, introduced by 
Varian (1975), is the LINEX (linear-exponential) loss 
function which is known asymmetric.  These loss 
functions were widely used by several authors; 
among of them Rojo (1987), Basu and Ebrahimi 
(1991), Pandey (1997), Soliman (2000), Nassar and 
Eissa (2004) and Shawky and Bakoban ((2008) & 
(2010)).     
       The quadratic loss for Bayes estimate of a 
parameter <, say, is the posterior mean assuming that 
exists, denoted by <=. The LINEX loss function may 
be expressed as  
      >�∆� @  A∆ � B∆ � 1, B C 0,                       (1.6) 
where ∆� <D � <. The sign and magnitude of the 
shape parameter c reflects the direction and degree of 
asymmetry, respectively. If B � 0, the overestimation 
is more serious than underestimation, and vice-versa. 
For B  closed to zero, the LINEX loss is 
approximately squared error loss and therefore 
almost symmetric. 
         The posterior expectation of the LINEX loss 
function Equation (1.6) is 
  EFG>H<D � <IJ @   expHB<DI EFNexp��B<�O �
                                  B P<D � EF�<�Q � 1,             (1.7) 

where EF�. � denotes the posterior expectation with 
respect to the posterior density of <.  By a result of 
Zellner (1986), the (unique) Bayes estimator of <,  
denoted by <D: under the LINEX loss is the value <D 
which minimizes (1.7), is given by 

     <D: � � .
R log9EFNexp��B<�O;,                       (1.8) 

Provided that the expectation EFNexp ��B<�O  exists 
and is finite [Calabria and Pulcini (1996)]. We are 
interested with maximum likelihood estimation as a 
classical approach among   non-Bayesian   methods.  
The   maximum   likelihood is based on the  
information Provided by empirical data. The 

invariant property was hold to obtain maximum 
likelihood estimators (MLE’s) of reliability and 
failure rate functions.  
     In this paper, a discussion of the MLE’s is 
considered in Section 2. In Section 3, Bayesian 
estimators is obtained. In Section 4, prediction of 
future records are derived. Numerical illustration and 
comparisons are  
presented in Section 5. Finally, conclusions are  made 
in Section 6.   
 
2. Maximum Likelihood Estimation 
         In this section, the maximum likelihood 
estimators (MLE’s) of IRD(�� are derived. We 
consider the case when � is unknown. Let �., �	, … 
be a sequence of i.i.d. random variables from IRD(�), 
the joint density function of first ( lower record 
values � � H�:�.�, �:�	�, … , �:�'�I is given by 
      �.,	,…,'H�:�.�, �:�	�, … , �:�'�I �
                                        ∏ ���V�W��XWYZ

∏ [��V�W��X\ZWYZ
,                   (2.1) 

where  ��. �  and ��. �  are  given  by  (1.1) and (1.2), 
respectively. Abbreviation �:�+� � �+ .  
The likelihood function of (2.1), is given by 
     8H�]�^I � _ �'  �` 
 ,                               (2.2) 
where    

    a � �'�	  and  _ � ∏ 	
�W�

.'+b.                        (2.3) 

Then the log-likelihood function, is given by  
    ℓ � ln 8H�]�^I � ln _ d ( ln � – a �.         (2.4) 
It follows, from (2.4), that the MLE of � is  
            �f � ( �'	 .                                                (2.5) 
For a given ,t the MLE of )(tR  is obtained by 

replacing � by �f in Equation (1.3), then MLE of 
)(log)( tRtH −=  can be obtained. 

 
3. Bayesian Estimation  
         The natural family of conjugate prior for � is a 
gamma distribution with p.d.f. 

g��� � hi
j�k� �k�.�h
 , � � 0, l, m � 0.      (3.1) 

      Applying Bayes theorem, we obtain, from 
Equations (2.2) and (3.1), the posterior density of � 
as 

         gH�]�I � no
j�p�  �p�.�n 
,   

                           � � 0,   l, m � 0,                 (3.2) 
 
where  q � l d (, r � m d a  and a � �'�	. 
Estimation of �: 
     The Bayes estimate �fns of  � relative to squared 
error loss function is given by 

         �fns � p
n.                                                 (3.3) 
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Under LINEX loss function, the Bayes estimate �fn: 
of  � using Equation (1.8) can be obtained as 

        �fn: � p
A ln �1 d A

n�.                                      (3.4) 

Estimation of ����: 
         The Bayes estimate �fns��� of  ���� relative to 
squared error loss function is given by 

       �fns��� � 1 � �1 d �\�
n ��p.                      (3.5)   

Under LINEX loss function, the Bayes estimate of 
����  using Equation (1.8) is 

   �fn:��� � 1 � .
A ln %∑ AW

+! �1 d + �\�
n ��pv+bw *.    (3.6)  

Estimation of  ���: 
       The Bayes estimate of the cumulative failure rate 
function   ��� � � ln ���� relative to quadratic loss 
function is 

      xns��� � ∑ .
-

v-b. �1 d - �\�
n ��p.                  (3.7)   

When the LINEX loss function is appropriate, the 
Bayes estimate of  ��� is 

 xn:��� � �.
A .             

             ln y∑ ��1�- PA
-Qv-bw P1 d - �\�

n Q�pz.     (3.8)  

4. Prediction of the Future Records 
        In the context of prediction of the future record 
observations, the prediction intervals provide bounds 
to contain the results of a future record, which is 
based on the previous record observed from the same 
sample. 
        Let the first n lower record observations 

),,...,,( )()2()1( nLLL xxxx =  then the conditional 

density function of the sth future lower record 

,1,)( snXY sL <≤=  for given )(nLn xx =  is 

given (see Arnold et  al., 1998) by  

��{|�';  �� � N}�~��}��X�O�\X\Z
Γ�=�'� . ��~�

[��X�,       
                                0 5 { 5 �' 5 ∞,                 (4.1) 
where ���� � � ln ���� � ���	, 
thus, from (1.1) and (1.2), relation (4.1) can be 
written as 
   ��{|�';  �� �  

                     
	 
�\X

��Γ�=�'� . N��{�O=�'�.�
��~�,    (4.2)  

where   
             ��{� � {�	 � �'�	.                            (4.3) 
The Bayes predictive density function of � � &:�=� 
given the observed record �' is given by 

      ���{|�'� � 2 �1. N��~�O�\X\Z
��Nn���~�O��i,   

                                      0 5 { 5 �',                    (4.4)       

where �1 � no
n�=�',p�  and r�� � (, q� is a beta 

function.    
Thus, the Bayesian prediction bounds for � � &= , 
given the previous data are obtained by evaluation 

the following predictive survival function, for some 
positive �,   
         ��� � �|�'� �^ � ���{|�'��{�X

�  

           � �'n��k�=�',p,��
n��k�=�',p� ,                                     (4.5) 

where � � �X����
n���X�

� �X����
���h�X��.� and �(r�l��., �	, �� is 

the incomplete beta function defined by    

         �(r�l��., �	, �� � � ��Z\Z
�.����Z���

�
w ��. 

       The lower and upper 100�% prediction bounds 
for � could be found numerically by finding � from 
(4.5), using 

PrN88��'� 5 � 5 �8��'�O � �, 
where )(xLL  and )(xUL  are the lower and upper 

limits, respectively, satisfying 

             PrN� � 88��'�|�' ^O � .��
	   

  and   PrN� � �8��'�|�' ^O � .��
	 .                       (4.6)       

        As a special important case from (4.5), we 

predict the first unobserved record value )1( +nLX  by 

putting 1+= ns , then we get 
      ���'�. ) �|�' ^� � 1 � �1 d ���p.               (4.7)   
                                                     
From (4.6) and (4.7), the lower and upper 100%τ  

prediction bounds are given, respectively, by    
     88��'� � �X

%.��h�X��.�NPZ\�
� Q\Z

o�.O*
Z
�
,    

 
and   �8��'� � �X

%.��h�X� �.�NPZ��
� Q\Z

o�.O*
Z
�
. 

5. Illustrative Examples and        
    Simulation Study 
      To illustrate the estimation and prediction 
techniques that were shown in the previous sections, 
we present two data sets. 
Example 1 (Real Life Data Set) 
     This data set is obtained from Proschan (1963) 
and represents times between successive failures of 
air conditioning (AC) equipment in a Boeing 720 
airplane and they are as follows:  502, 386, 326, 153, 
74, 70, 59, 57, 48, 29, 29, 27, 26, 21, 12, we fit the 
inverse Rayleigh distribution by used Kolmogorov-
Simirnov (K-S) test. It is observed that, the K-S 
distance is 0.21378  with the corresponding  P value 
is 0.43879. For this data set, the Chi- square value is 
2.6383. Therefore, it is clear that inverse Rayleigh 
model fits quite well to the data set. Using our results 
in Sections 2 and 3, the MLEs (.)ML and the Byes 
estimators ((.)BS, (.)BL) of �, ���� and  ��� have been 
computed and the results are given in Tables 1 and 2. 
Using the prediction procedure described in Section 
4, the 90%, 95% and 99% prediction intervals for the 
next lower record x16 are computed respectively, as 
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follows  (LL(x16), UL(x16)) = (3.11395, 3.56848), (3.21959, 3.44610)  and  (3.30755, 3.35281).   
  
Table 1: Estimated values of  �, ���� and ���� with actual Values (� �  . ¡¡¢,   £ �  , ¤ �  , � �

¡. ¥¢, ��¡. ¥¢� � ¡. ¦¥§¨¦ and��¡. ¥¢� � ¡. ¡ ©¥ ). 
Parameters (.)ML (.)BS (.)BL 

c= - 0.5 c= 0.001 c= 2 c = 3 
� 2160 8.47059 9.74200 8.46848 5.87703 5.18054 

���� 1 0.99998 0.99998 0.99998 0.99998 0.99998 
 ��� 0 0.00016 0.00002 0.00002 0.00002 0.00002 

 
Table 2: MSEs of the estimates  �, ���� and ���� when (� �  . ¡¡¢, £ �  ,   ¤ �  , � � ¡. ¥¢, ��¡. ¥¢� �

¡. ¦¥§¨¦ and ��¡. ¥¢� � ¡. ¡ ©¥ ). 
Parameters (.)ML (.)BS (.)BL 

c= - 0.5 c=0.001 c= 2 c =3 
� 4.65694x106 41.80380 59.86110 41.77660 14.9926 10.08400 

���� 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080 
 ��� 0.00082 0.00082 0.00082 0.00082 0.00082 0.00082 

 
As shown from Table 2 that the Bayes estimates for 
all parameters are better than the MLE's estimates. 
Example 2 (Simulated Data): 
         In order to assess the statistical performances of 
these estimates, a simulation study is conducted. The 
estimated mean and the mean square errors (MSE’s) 
are computed for each estimator. The random 
samples are generated as follows: 
1. For � � 2.05, we generate a random samples of 
sizes n=3, 5, 7, 10 and 15. 
2. Using ,θ  obtained in step (1), with  

l � 1.2, m � 1, � � 5, ��5� � 0.078728 

and  �5� � 2.54176 , the MLEs and the Bayes 
estimates relative to squared error loss and  LINEX 
loss are computed. 
3. Using the prediction procedure described in 
Section 4, the 95% prediction interval for the next 
lower records are computed. 
4. The above steps are repeated 1000 times and the 
mean square errors are computed for each method. 
    Our computational results were computed by using 
Mathematica 8.0. Estimates, MSE’s and prediction 
intervals are displayed in Tables 3, 4 and 5.  

 
Table 3: Estimated mean values of  �, ���� and ���� with actual Values (� �  . ¡¢, £ � §.  , ¤ � §, � �

¢, ��¢� � ¡. ¡¥©¥ © and ��¢� �  . ¢¯§¥¨�. 
n Parameters �. �°: �. �ns 

�. �n: 
c= - 0.5 c= 0.001 c= 2 c= 3 

3 
� 2.99361 1.88553 2.17131 1.88507 1.32291 0.17202 

���� 0.10878 0.07179 0.07202 0.07172 0.07055 0.06998 
 ��� 2.39402 2.79622 2.86222 2.79606 2.58279 2.49696 

5 
� 2.59565 2.00985 2.21562 2.00949 1.52737 1.38104 

���� 0.09729 0.07645 0.07668 0.07645 0.07555 0.07511 
 ��� 2.42947 2.68977 2.73172 2.68968 2.54457 2.48240 

7 
� 2.48476 2.08618 2.24524 2.08589 1.66907 1.53126 

���� 0.09387 0.07940 0.07959 0.79940 0.07867 0.07831 
 ��� 2.42921 2.62383 2.65452 2.62377 2.51381 2.46505 

10 
� 2.42726 2.14358 2.26337 2.14336 1.79879 1.67545 

���� 0.09193 0.08159 0.08173 0.08159 0.08102 0.08074 
 ��� 2.43880 2.57999 2.60186 2.57994 2.49924 2.46236 

15 
� 1.95219 1.86557 1.92143 1.86546 1.67890 1.60244 

���� 0.07512 0.07175 0.07182 0.07175 0.07146 0.07131 
 ��� 2.38871 2.54430 2.59060 2.56889 2.45236 2.35960 
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Table 4: MSE of �, ���� and ���� when (� �  . ¡¢, £ � §.  , ¤ � §, � � ¢,     ��¢� � ¡. ¡¥©¥ © and ��¢� �
 . ¢¯§¥¨�. 

n Parameters �. �°: �. �ns 
�. �n: 

c= - 0.5 c=0.001 c= 2 c= 3 

3 
� 2.50424 0.37600 0.63278 0.37581 0.62311 0.83300 

���� 0.00662 0.00051 0.00051 0.00051 0.00050 0.00050 
 ��� 0.35006 0.16169 0.20043 0.16163 0.09553 0.09437 

5 
� 2.19838 0.36540 0.60434 0.36515 0.40672 0.54038 

���� 0.00258 0.00051 0.00051 0.00051 0.00049 0.00048 
 ��� 0.20315 0.10777 0.12248 0.10774 0.08379 0.08630 

7 
� 1.17017 0.32847 0.46853 0.32830 0.30776 0.39843 

���� 0.00142 0.00043 0.00043 0.00043 0.00042 0.00041 
 ��� 0.12735 0.07820 0.08598 0.07819 0.06574 0.07793 

10 
� 1.14605 0.30293 0.40466 0.30269 0.25988 0.28392 

���� 0.00141 0.00037 0.00037 0.00037 0.00040 0.00038 
 ��� 0.12629 0.07250 0.07452 0.07250 0.06325 0.07788 

15 
� 0.19042 0.06424 0.11522 0.06416 0.00052 0.01730 

���� 0.00025 0.00008 0.00008 0.00008 0.00007 0.00007 
 ��� 0.03400 0.00647 0.00432 0.00647 0.01852 0.02631 

 
Table 5: The lower (LL), the upper (UL) and the width of the 95% prediction intervals for the future lower record 

&:�'�.�, ( � 3, 5, 7, 10 and 15.   
n Previous Record Values LL UL Width 
3 {0.93449, 0.77995, 0.75574} 0.69472 0.70256 0.00784 
5 {0.67174, 0.51245, 0.48736, 0.48069, 0.44281} 0.43337 0.43466 0.00129 
7 {1.23761, 0.925816, 0.72417, 0.59770, 0.56927, 0.56716, 0.52462} 0.51260 0.51352 0.00092 

10 {0.916405, 0.85255, 0.58738, 0.58253, 0.56952, 0.54601, 0.49919, 0.48114, 
0.43236, 0.41092} 

0.40655 0.40714 0.00059 

15 {1.50770, 1.29072, 0.75962, 0.72922, 0.61196, 0.59017, 0.57244, 0.53403, 
0.51315, 0.50736, 0.49481, 0.48884, 0.46894, 0.36701, 0.35995} 

0.35788 0.35817 0.00029 

 
Tables 1 and 3 show the mean estimates. 

From Tables 2 and 4, we see that the Bayes estimates 
for all parameters are better than the MLEs estimates. 
Table 5 shows the lower and the upper 95% 
prediction bounds for the next record values 
(&:�'�.��,  when n =3, 5, 7, 10 and 15.  
 
6. Conclusion 
      In this paper we have presented the Bayesian and 
non-Bayesian estimates of the parameter, reliability 
function R(t) and cumulative failure rate function 
H(t) for the lifetime follow the inverse Rayleigh 
distribution. The estimations are conducted on the 
MSE of estimated parameters. The MLEs are 
obtained based on record values. Bayes estimators, 
under squared error loss and LINEX loss functions, 
are also derived. 
      Our observations concerning the results are stated 
in the following points: 
1- Estimation: Tables 1 and 3 show the mean 
estimates. From Tables 2 and 4, we observe that the 
Bayes estimates perform better than the MLEs, we 
also observe that the MSEs decreases as n increases. 

2- Prediction: We conclude, from Table 5, that the 
width of the predictive decreases as n increases. 
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