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Abstract: This article considers estimation of the unknowrapeeters for the inverse Rayleigh distributidR)
based on lower record values. We consider the manirikelihood (ML) and Bayesian inference of the unknown
parameters of the model, as well as the reliabditg cumulative hazard rate functions. The Bayématrs are
obtained relative to both symmetric (squared emag asymmetric (linear exponential EX)) loss functions. It is

noticed that the symmetric and asymmetric Bayesnastrs are obtained in closed forms.

Bayesiamliptien

interval of the future record values are obtainedvall. Finally, practical examples using realorecvalues are

given to illustrate the application of the results.
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1. Introduction

The Rayleigh distribution is a special ecad
the Weibull distribution, which provides a popudsti
model useful in several areas of statistics ineigdi
life testing and reliability which age with time @s
failure rate is a linear function of time. Various
applications of this distribution are given in Siglal
(1962), Polovko (1968), Gross and Clark (1975) and
Lee et al. (1980). In the life distribution, if the
random variable (r.v.) T has Rayleigh distribution,
then the r.v. X=UT has anIRD. The IRD was
introduced in literature by Trayer (1964) (see,
Mohsin and Shahbaz (2005)) and it has many
applications in the area of reliability studies. ddo
(1972) mentioned that the distribution of lifetimefs
several types of exponential units can be
approximated by thelRD and discussed some
properties of maximum likelihood estimatdvil(E)
of the parametefi. The probability density function
(p.d.f.) of thelRD with scale parametéris

ol
f(x; 9)—;6 X2 x,0 >0, (1.2
and a cumulative distribution function (c.d.f.)

6

F(x; ) = e 2%, x>0, 8 >0. 1.2)
The reliability, failure rate and the cuative

failure rate (hazard rate) functions I&iD are given,

respectively, by
6
R(t; 9)=1—-F(t; ) =1— e 2,

t; 0
h(t; 0) = ﬁt 93'

(1.3)
AL
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‘]
H(t; 6) = —InR(t) = —ln(l - e‘TZ). (1.5)

Record values are important in many real-life
situations involving data relating to weather, spor
economics, and life-tests. The statistical study of
record values have been pursued in different
directions by several authors; see, Nagarajé83}19
Ahsanullah (1995) and Arnolédt al. (1998). Some
inferential methods based on record values for the
Rayleigh and Weibull, generalized Pareto, Lomax,
generalized exponential and power function
distributions are studied by Balakrishnan and Chan
(1993), Sultan and Moshref (2000), Sultein al.
(2001), Ragab (2002) and Sultah al. (2002).
Moreover, Abd-El-Hakim and Sultan (2001) have
obtained the maximum likelihood estimators
(MLE’s) of Weibull parameters based on record
values. Also, Shawky and Bakoban (2010) have
derived moments and moment generating functions
from EG distribution and have made some statistical
inferences based on record values.

In this paper, Bayesian and non-Bayesian
estimators are derived for scale parameters, iftijab
and failure rate functions based on lower record
values from IR distribution. Solimaa al. (2010)
discussed the same problem with different prior
distribution and another technique.

Now, le{X,,,n = 1} be an infinite sequence of
i.i.d. random variables from an absolutely continsio
distribution function F , and probability density
functionf. Let X;; denote thé™ order statistic of
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the random sample,, X, ...,X;, and F;; be its
cumulative  distribution  function. Let T, =
min{X;, X5, ..., X}, k = 1. We say thak; is a lower
record value of this sequencef < T;_;,j = 2. By
definition, X, is a record value. LetL(n) =
min{j:j > L(n — 1),X; < X,(n-1)}, n =2 with
L(1) = 1. ThenX, ), n = 1, denotes the sequence of
lower record values. From the above definition, the
sequence of record statistics can be viewed ag orde
statistics from a sample whose size is determined b
the values and the order of occurrence of the
observations.

In Bayesian estimation, we consider twoety
of loss functions. The first is the squared erassl
function (quadratic loss) which is classified as a
symmetric function and associates equal importance
to the losses for overestimation and underestimatio
of equal magnitude. The second, introduced by
Varian (1975), is the LINEX (linear-exponentials
function which is known asymmetric. These loss
functions were widely used by several authors;
among of them Rojo (1987), Basu and Ebrahimi
(1991), Pandey (1997), Soliman (2000), Nassar and
Eissa (2004) and Shawky and Bakoban ((2008) &
(2010)).

The quadratic loss for Bayes estimate of a
parametef, say, is the posterior mean assuming that
exists, denoted bg,. The LINEX loss function may
be expressed as

I(A) o e® —cA—1,c #0, (1.6)
where A= f — B. The sign and magnitude of the
shape parameterreflects the direction and degree of
asymmetry, respectively. #f > 0, the overestimation
is more serious than underestimation, and viceavers
For ¢ closed to zero, the LINEX loss is
approximately squared error loss and therefore
almost symmetric.

The posterior expectation of the LINEX dos
function Equation (1.6) is

Egli(B — B)] & exp(ch) Eglexp(—cB)] -
c(B-E®)-1, (1.7)
where Eg(.) denotes the posterior expectation with
respect to the posterior density ®f By a result of
Zellner (1986), the (unique) Bayes estimatorfof

denoted by, under the LINEX loss is the valyg

which minimizes (1.7), is given by
1

Bu = —log{Eglexp(—cP)]}, (1.8)
Provided that the expectatidiy[exp (—cf)] exists
and is finite [Calabria and Pulcini (1996)]. We are
interested with maximum likelihood estimation as a
classical approach among non-Bayesian methods.
The maximum likelihood is based on the
information Provided by empirical data. The
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invariant property was hold to obtain maximum
likelihood estimators (MLE’s) of reliability and
failure rate functions.

In this paper, a discussion of the MLE’s is
considered in Section 2. In Section 3, Bayesian
estimators is obtained. In Section 4, prediction of
future records are derived. Numerical illustratéaord
comparisons are
presented in Section 5. Finally, conclusions arden
in Section 6.

2. Maximum Likelihood Estimation
In this section, the maximum likelihood
estimators (MLE's) of IRD(6) are derived. We
consider the case whehis unknown. Letx,, x,, ...
be a sequence of i.i.d. random variables fi&dD(0),
the joint density function of firsta lower record
valuesx = (x,(1), X1 (2, - Xy ) IS given by
fiz,..m XL(1) XL(2)r - XL(n) ) =

T, F ()

MR Flep ) (2.1)
where f(.) andF(.) are given by (1.1) and (1.2),
respectively. Abbreviatiom, ;) = x;.
The likelihood function of (2.1), is given by

L(6]x) =u6mea? (2.2)
where
g=x;% andu = ?:15—3. (2.3)

Then the log-likelihood furlmtion, is given by

¢=InL(0]x) =lnu+nlnd-qo. (2.4)
It follows, from (2.4), that the MLE of is
0=nx?. 32

For a givent,the MLE of R(t) is obtained by

replacing® by 8 in Equation (1.3), then MLE of
H(t) = —log R(t) can be obtained.

3. Bayesian Estimation
The natural family of conjugate prior tbis a
gamma distribution with p.d.f.

9(6) = %ea—le—bﬂ, 6>0,ab>0 (3.1

Applying Bayes theorem, we obtain, from
Equations (2.2) and (3.1), the posterior density of
as

(6]x) _ B ga-1,-B6
IV =@ ’
6>0, ab>0, 3.2)
whereA=a+n,B =b+q andq = x;°.
Estimation of 9:
The Bayes estimatg of 6 relativeto squared

error loss function is given by

5 A
Ogs = -
BS = 3

3.3)
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Under LINEX loss function, the Bayes estimalg,
of 6 using Equation (1.8) can be obtained as
B =2In (1+5).
Estimation of R(t):
The Bayes estimalg(t) of R(t) relativeto
squared error loss function is given by

Rps(®) =11+, (3.5)

Under LINEX loss function, the Bayes estimate of
R(t) using Equation (1.8) is
Rep(t) =1—=In{Z2, (1 +
Estimation of H(t):
The Bayes estimate of the cumulative faihate

function H(t) = —InR(t) relative to quadratic loss
function is

~ w 1 jt™2 _4

Hps(t) = Xjza 5 A+ )™ 3.7)
When the LINEX loss function is appropriate, the
Bayes estimate di(t) is
Hp, (t) = _71

. it=2\ "4
1n{ 2o~ () (1+257) } (3.8)

4. Prediction of the Future Records

In the context of prediction of the futuezord
observations, the prediction intervals provide ksin
to contain the results of a future record, which is
based on the previous record observed from the same
sample.

Let the firstn lower record observations

X=(X_y» X (@) 1-» X (m)» then the conditional

(3.4)

it=2

).

(3.6)

density function of thes" future lower record
Y=X_ g 1sn<s, for given X, =X, Iis

given (see Arnoldt al., 1998) by
[6N-6EI* ™ f(y
[l 6) = T S
I<y<x, <ox,
whereG (x) = —InF(x) = 6x72,
thus, from (1.1) and (1.2), relation (4.1) can be
written as

(4.1

Ol )=
S EOPTeY), (4.2)

where
£ =y~ —xi2. (4.3)

The Bayes predictive density functionlof= X
given the observed recoxg is given by

* _ £160)
[ Oba) = 201G e
0<y<xy,, (4.4)
where C1 = and B(s —n,A) is a beta
B(s—n,A)
function.

Thus, the Bayesian prediction bounds Yo X,
given the previous data are obtained by evaluation
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the following predictive survival function, for s@n
positiveA,

FOC> Alx,) = [ Olx)dy
_ InBeta(s—n,A,S), (4_5)

Beta(s—n,A)
x3-1? x3-2?
BAZ, . 22(bxfr1)
the incomplete beta function defined by
§ t#1

InBeta(zy,2,,6) = | o

The lower and upper 18% prediction bounds
for Y could be found numerically by finding from
(4.5), using

Pr[LL(x,) <Y < UL(x,)] =1,

where LL(X) andUL(X) are the lower and upper

limits, respectively, satisfying
Pr[Y > LL(x,)|x,] = %
and Pr[Y > UL(x,)|x,] = %’. (4.6)
As a special important case from (4.5), we

predict the first unobserved record val¥g ,,,, by

whereé = andInBeta(z,,z,,8) is

putting S=N+1, then we get
fOner = Ax) =1-(1+ 6)_A- 4.7)

From (4.6) and (4.7), the lower and upper 10®%

prediction bounds are given, respectively, by
LL(x,) = =

_1
a+oxE+n[(5) Ay

Xn

and UL(x,) = —
(+@xd+)[(5) A1z
5. lllustrative Examples and

Simulation Study

To illustrate the estimation and prediction
techniques that were shown in the previous sections
we present two data sets.

Example 1 (Real Life Data Set)

This data set is obtained from Proschan (1963)
and represents times between successive failures of
air conditioning (AC) equipment in a Boeing 720
airplane and they are as follows: 502, 386, 323, 1
74,70, 59, 57, 48, 29, 29, 27, 26, 21, 12, wehig
inverse Rayleigh distribution by used Kolmogorov-
Simirnov (K-S) test. It is observed that, the K-S
distance is 0.21378 with the correspondiRgralue
is 0.43879. For this data set, the Chi- squareevedu
2.6383. Therefore, it is clear that inverse Rayleig
model fits quite well to the data set. Using owsulés
in Sections 2 and 3, the MLEs(.) and the Byes
estimators ((gs, (.)sL) Of 8, R(t) andH (t) have been
computed and the results are given in Tables 12and
Using the prediction procedure described in Section
4, the 90%, 95% and 99% prediction intervals fer th
next lower record % are computed respectively, as
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follows (LL(xi¢), UL(x:) = (3.11395, 3.56848),

Table 1:

(3.21959, 3.44610) aBBQ755, 3.35281).

Estimated values of 0, R(t) and H(t) with actual Values (@ = 2.005, a =2,b =2,t =
0.75,R(0.75) = 0.97169 andH(0.75) = 0.02872).
Parameters (@] (Bs (L
c=-05 c=0.001 c=2 c=3
6 2160 8.47059 9.74200 8.4684¢ 5.87703 5.180p4
R(t) 1 0.99998 0.99998 0.99998 0.99998 0.99998
H(t) 0 0.00016 0.00002 0.00002 0.0000p 0.00002

Table2: MSEsof theestimates 8, R(t) and H(t) when (6 = 2.005,a =2, b=2,t=0.75,R(0.75) =
0.97169 and H(0.75) = 0.02872).

Parameters (@] (s (L
c=-0.5 c=0.001 c=2 c=3
6 4.65694x10 41.80380 59.86110 41.77660 14.9926 10.08400
R(t) 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080
H(t) 0.00082 0.00082 0.00082 0.0008% 0.00082 0.00082

As shown from Table 2 that the Bayes estimates for
all parameters are better than the MLE's estimates.
Example 2 (Smulated Data):

In order to assess the statistical perémes of
these estimates, a simulation study is conducted. T
estimated mean and the mean square errors (MSE’s)
are computed for each estimator. The random
samples are generated as follows:

1. For@ = 2.05, we generate a random samples of
sizes n=3, 5, 7, 10 and 15.
2. Using @, obtained in step (1), with

a=12b=1t=5R(5) = 0.078728

and H(5) = 2.54176, the MLEs and the Bayes
estimates relative to squared error loss and LINEX
loss are computed.
3. Using the prediction procedure described in
Section 4, the 95% prediction interval for the next
lower records are computed.
4. The above steps are repeated 1000 times and the
mean square errors are computed for each method.
Our computational results were computed bygisin
Mathematica 8.0. Estimates, MSE’s and prediction
intervals are displayed in Tables 3, 4 and 5.

Table 3: Estimated mean valuesof 0, R(t) and H(t) with actual Values(@ = 2.05, a=1.2,b=1,t =
5,R(5) = 0.078728 and H(5) = 2.54176).

(s

: Parameters Cm (Jas —=-05 = 0.001 =2 =3
9 2.99361 1.88553 217131 1.88507 1.32291 0.17202
3 R(D 0.10878 0.07179 0.07202 0.07172 0.07055 0.06998
H(b) 2.39402 279622 2.86222 2.79606 258270 2.49606
0 2.59565 2.00985 2.21562 2.00949 152737 1.38104
5 R(D) 0.09729 0.07645 0.07668 0.07645 0.07556 0.07511
H(b) 242947 2.68977 2.73172 2.68968 254457 248240
0 248476 2.08618 2.24524 2.08589 1.66907 1.53126
7 R(D) 0.09387 0.07940 0.07959 0.79940 0.07867 0.07881
H(b) 242921 2.62383 2.65452 2.62377 251381 246505
0 242726 214358 2.26337 2.14336 1.79870 1.67545
10 R(D) 0.09193 0.08159 0.08173 0.08159 0.08102 0.08074
H(b) 243880 257999 2.60186 257994 249924 246236
0 1.95219 1.86557 1.02143 1.86546 1.67890 1.60244
15 R(D 0.07512 0.07175 0.07182 0.07175 0.0714b 0.07181
H(b) 238871 254430 2.59060 256889 24523 2.35960
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Table4: MSE of 8, R(t) and H(t) when (8 = 2.05,a=1.2,b=1,t =5,

R(5) = 0.078728 and H(5) =

2.54176).
()sL

n Parameters | - (. (Jas —=-05 c=0.001 =2 =3
9 250424 | 0.37600 063278 0.37581  0.62311 0.83300
3 R(D) 0.00662 | 0.00051 | 0.00051 | 0.00051 0.00050 0.00050
H(b) 0.35006 | 0.16169 | 020043 | 0.16163 0.09553 0.09437
0 219838 | 0.36540 | 060434 | 0.36515 0.40672 0.54038
5 R(D) 0.00258 | 0.00051 | 0.00051 | 0.00051 0.00049 0.00048
H(D) 020315 | 0.10777 | 012248 | 0.10774 0.08379 0.08630
0 117017 | 0.32847 | 046853 | 0.32830 0.30776 0.39843
7 R(D) 0.00142 | 0.00043 | 0.00043 | 0.00043 0.00042 0.00041
H(b) 012735 | 0.07820 | 0.08598 | 0.07819 0.06574 0.07793
0 1.14605 | 0.30293 | 040466 | 0.30269 0.25988 0.28392
10 R(D) 0.00141 | 0.00037 | 0.00037 | 0.00037 0.00040 0.00038
H(b) 012629 | 0.07250 | 007452 | 0.07250 0.06325 0.07788
0 019042 | 0.06424 | 011522 | 0.06416 0.00052 0.01730
15 R(D) 0.00025 | 0.00008 | 0.00008 | 0.00008 0.00007 0.00007
H(t) 0.03400 | 0.00647 | 0.00432 | 0.00647 0.01852 0.02631

Table 5: The lower (LL), the upper (UL) and the width of t88% prediction intervals for the future lower reto

XL(n+1),n = 3, 5, 7, 10 and 15.

n Previous Record Values LL UL Width
3 {0.93449, 0.77995, 0.75574} 0.69472| 0.70256| 0.00784
5 {0.67174, 0.51245, 0.48736, 0.48069, 0.44281} 0.43337| 0.43466| 0.00129
7 {1.23761, 0.925816, 0.72417, 0.59770, 0.56956T16, 0.52462} 0.51260| 0.51352| 0.00092
10| {0.916405, 0.85255, 0.58738, 0.58253, 0.569F1€D1, 0.49919, 0.48114| 0.40655| 0.40714| 0.00059
0.43236, 0.41092}
15 {1.50770, 1.29072, 0.75962, 0.72922, 0.61190@17, 0.57244, 0.53403,| 0.35788| 0.35817| 0.00029
0.51315, 0.50736, 0.49481, 0.48884, 0.46894, 0.B6T35995}

Tables 1 and 3 show the mean estimates.
From Tables 2 and 4, we see that the Bayes esimate
for all parameters are better than the MLEs esBmat
Table 5 shows the lower and the upper 95%
prediction bounds for the next record values
(XL(n+1)), Whenn =3,5,7,10 and 15.

6. Conclusion

In this paper we have presented the Bayesian
non-Bayesian estimates of the parameter, religbilit
function R(t) and cumulative failure rate function
H(t) for the lifetime follow the inverse Rayleigh
distribution. The estimations are conducted on the
MSE of estimated parameters. The MLEs are
obtained based on record values. Bayes estimators,
under squared error loss and LINEX loss functions,
are also derived.

Our observations concerning the results tated
in the following points:
1- Estimation: Tables 1 and 3 show the mean
estimates. From Tables 2 and 4, we observe that the
Bayes estimates perform better than the MLEs, we
also observe that the MSEs decreases as n increases
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2- Prediction: We conclude, from Table 5, that the
width of the predictive decreases as n increases.
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