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1. Introduction: 

The Korteweg-de Vries (KdV) equation has 

been derived in fields such as shallow water waves, 

stratified internal waves, ion-acoustic waves, plasma 

physics and lattice dynamics [1]. When high-order 

dispersion is considered, the fifth-order KdV (fKdV) 

equations have been seen in some physical contexts, 

usually investigated in the exponential asymptotic 

investigating a generalized variable-coefficient fKdV 

equation and numerical calculations [2, 3]. Several 

integrable fKdV, e. g.; the Lax’s equation, the 

Sawada-Kotera (SK) equation and the Kaup-

Kupershmidt equation, have been discussed, which 

have analytic solutions and infinite sets of 

conservation laws [4-6]. Besides, the higher-order 

KdV-modified KdV equations with higher-degree 

nonlinear terms describing gravity waves in the 

atmosphere have been the periodic and solitary wave 

solutions of which have been obtained in Li, (2008) 

[7]. 

Due to the inhomogeneities of media and non-

uniformities of boundaries, the variable-coefficient 

nonlinear evolution waves, ion-acoustic waves, 

plasma physics and lattice dynamic equations can be 

used to describe the real physical backgrounds [8-11]. 

In this paper, with the aid of symbolic 

computation [9-11], our interest will be devoted  

to investigating a generalized variable-

coefficient fKdV equation such as the one given 

xxxxxxxxt uutduutcuutbuutau )()()()(
2 

0)()()()(  xxxxxxxxx utnutmutlute ,                    (1) 

where ),( txu  is a function of space variable x  

and time variable t  and )(ta , )(tb , )(tc , )(td , 

)(te , )(tl , )(tm  and )(tn  are analytic functions 

of t . If the parameters are specially chosen, a series 

of equations can be obtained, which are integrable [4-

6] and can be used to describe such physical 

phenomena as the interaction between a water wave 

and a floating ice cover and the gravity capillary 

waves [2, 3]. 

In case of 6)( td , 1)( te , 
2

)( tl  and 

)(ta = )(tb = )(tc = )(tm = )(tn =0, Eq. (1) reduces 

to 

06
2  xxxxxxxxxxt uuuuu  ,                         (2) 

which has been proposed for the interaction between 

a water wave and a coating ice cover in river 

channels and the gravity-capillary waves with the 

Bond number close to and slightly less than 3/1 , 

where ),( txu  is the scaled depth, x  and t  are the 

scaled space and time coordinates, respectively and 

  is a small parameter [2]. 

For 1)( ta , 2)( tb , 3)( td , )(te , 

)15/2()( tl , )(tc = )(tm = )(tn =0, Eq. (1) 

reduces to 

0)15/2(23  xxxxxxxxxxxxxxxt uuuuuuuuu  , (3) 

which has been derived for the classical gravity-

capillary water-wave problem, where   is a scale 

parameter [3]. 

In the limiting case 15)()(  tbta , 45)( tc , 

1)( tl  and )(td = )(te = )(tm = )(tn =0, Eq. (1) 

reduces to integrable SK equation of the form 

0451515
2  xxxxxxxxxxxxt uuuuuuuu ,              (4) 

which has been investigated in [5, 12, 13]. 
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When 0)()()()(  tntmtetd , Eq. (1) 

reduces to integrable SK equation as 

0)()()()(
2  xxxxxxxxxxxxt utluutcuutbuutau ,            (5) 

some soliton solutions of which have been obtained 

in [14]. 

The integrable nonlinear evolution equations 

(NLEEs) possess several properties, e. g.; N-soliton 

solutions, Backlünd transformation, Lax’s pair and 

infinite sets of conservation laws [1, 4-6, 9-11]. Since 

there are choices for the parameters, the variable-

coefficient NLEEs can be considered as 

generalizations of the constant coefficient ones [9-

11]. Under certain constraint conditions, the variable-

coefficient models may be proved to be integrable 

and given explicit analytic solutions [15]. The 

corresponding constraint conditions on Eq. (1) in this 

paper, which are obtained by the Painlevé analysis 

[16] and conditions from the variable-coefficient 

models mapped to the completely integrable 

constant-coefficient counterparts [14] will be 

])(exp[
)(15

)()( dttm
tl

tbta 


,         (6a) 

])(2exp[
)(45

)(
2

dttm
tl

tc 


,                      (6b) 

0)()(  tetd ,                        (6c) 

where 0  is an arbitrary constant. 

It is worth noting that there have been no discussions 

on Eq. (1) under conditions (6). Considering such 

insufficiency, we will apply the Hirota bilinear 

method [13, 17, 18] to investigate the integrability for 

Eq. (1) and the characteristic-line method [19] to 

discuss the effect of the variable coefficients in Eq. 

(1). 

The structure of this paper will be organized as 

follows: In section 2, with symbolic computation, the 

bilinear form of Eq. (1) is obtained. In order to 

illustrate the proposed method, we consider a 

generalized variable-coefficients fifth-order KdV 

equation and new periodic wave solutions are 

obtained, which included periodic two solitary 

solutions, doubly periodic solitary solution. Finally, 

conclusion and discussion are given in section 3. 

 

2. Soliton solutions of fifth-order KdV equation 

with variable coefficients 
We make the dependent variable transformation 

xxtxfdttmtxu )],(log[])(exp[2),(   ,          (7) 

Where ),( txf  is a real function of x  and t . The 

bilinear equation of Eq. (1) turns out to have the 

following form 

0),().,(])()([
26  txftxfDtnDtlDD xxtx , (8) 

Where 
n
t

m
x DD  is the Hirota bilinear derivative 

operator [18] defined by 

ttxx
nmn

t
m
x txgtxf

ttxx
txgtxfDD 


















 ',')]','(),([)

'
()

'
(),().,(

,(9) 

This definition is used to give 

]10156[2.)( 332456
6

xxxxxxxx ffffffffffD    (10a) 

  ][2.)( txxttx ffffffDD  ,          (10b) 

][2.)(
2

xxxxx ffffffD  .          (10c) 

To solve the reduced Eq. (8) by means of the 

extended homoclinic test function [20-28], we 

suppose a solution of Eq. (8) as 

 

)exp()cos()exp(),( 11122111 tcxkqtcxkptcxktxf 

, (11) 

Where 1p , 1q , ic , ik , )2,1( i   are parameters to 

be determined later. 

Substituting Eq. (11) into (8) and equating all 

coefficients of )](exp[ 11 tcxk  , )cos( 22 tcxk  , 

)sin( 22 tcxk   to zero, one gets a set of algebraic 

equation for 1p , 1q , ic , ik , )2,1( i . Solving this 

set of algebraic equations with the aid of Maple leads 

to many solutions, from which the following four 

solutions are chosen as: 

' 

The set of coefficients of solution (11) are given as: 

11 kk  , 22 kk  ,               (12a) 

])(16)([
4
111 tlktnkc  , 22 cc  , (12b) 

11 qq  , 01 p .                 (12c) 

According to this set of coefficients, (11) leads to 

})](16)([exp{),(
4
111 ttlktnkxktxf   

       + })](16)([exp{
4
1111 ttlktnkxkq  .  (13) 

Substituting this function into (7) gives a new 

periodic wave solution of (1) as follows: 

/])(exp[8),(
2
11 dttmkqtxu  

})](16)([exp{
4
111 ttlktnkxk   

    +
2

4
1111 })](16)([exp{ ttlktnkxkq  .        (14) 

Case (2): 

For this case, the coefficients of the solution (11) are 

taken as: 

11 kk  , 22 kk  ,                    (15a) 

)]()()510[(
4
2

2
2

2
1

4
111 tntlkkkkkc  ,     (15b) 

)]()()510[(
4
1

2
2

2
1

4
222 tntlkkkkkc  ,    (15c) 
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)3(4

)3(
2
2

2
1

2
1

2
2

2
1

2
2

2
1

1
kkk

kkkp
q




 , 11 pp  .     (15d) 

These coefficients lead to a form of solution (11) as: 

})]()()510[(exp{),(
4
2

2
2

2
1

4
111 ttntlkkkkkxktxf   

       + })]()()510[(cos{
4
1

2
2

2
1

4
2221 ttntlkkkkkxkp   

       + ]
)3(4

)3(
[

2
2

2
1

2
1

2
2

2
1

2
2

2
1

kkk

kkkp




 

    * })]()()510[(exp{
4
2

2
2

2
1

4
111 ttntlkkkkkxk  . 

                                       (16) 

Substituting this solution form into (7) admits to a 

new periodic solitary wave solution of (1). 

Case (3): 

In this case, the coefficients of solution (11) are 

represented by 

21 ikk  , 22 kk  ,                     (17a) 

)]()(16[
4
221 tntlkikc  , )]()(16[

4
222 tntlkkc  ,(17b) 

11 pp  , 
4

2
1

1

p
q  .       (17c) 

These coefficients are used into (11) to give 

})]()(16[exp{),(
4
222 ttntlkikxiktxf   

+ })]()(16[cos{
4
2221 ttntlkkxkp   

  + })]()(16[exp{
4

4
222

2
1 ttntlkikxik

p
 .             (18) 

Inserting this equation into (7) admits to a new 

periodic solitary wave solution of (1). 

Case (4): 

Finally, we can take a set of coefficients to solution 

(11) as follows: 

)]()(16[3
4
221 tntlkkc  , )]()(16[

4
222 tntlkkc  ,(19a) 

21 3kk  , 22 kk  ,    (19b) 

11 pp  , 01 q .     (19c) 

These coefficients lead to solution (11) of the form 

})]()(16[33exp{),(
4
222 ttntlkkxktxf                                                                                                 

          + })]()(16[cos{
4
2221 ttntlkkxkp  .  (20) 

Using this solution into (7) admits to a new periodic 

solitary wave solution of (1). 

 

3. Conclusion 
Using a bilinear form and the extended 

homoclinic test approach, we obtain breather-type 

soliton and two soliton solutions for the generalized 

variable-coefficients fifth-order KdV equation. The 

results show that the extended homoclinic test 

approach is very effective in finding exact solitary 

wave solutions for nonlinear evolution equation with 

variable coefficients. 

It is worthwhile to mention that the proposed 

method is reliable and effective and can also be 

applied to solve other types of higher dimensional 

integrable and non-integrable systems of nonlinear 

evolution equations. 
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