
Life Science Journal, 2012;9(1) http://www.lifesciencesite.com

603

Cross-Platform Service for Nomadic Devices in Biodiversity Research

M. Aslam, M. Ali, Syed Ahsan, M. Junaid Arshad, Amjad Farooq, M. Shahbaz

Department of Computer Science and Engineering, UET, Lahore, Pakistan. maslam@uet.edu.pk

Abstract: The synergy between cloud and virtualization has become popular in the recent years. Different handheld
devices come with versatile and heterogeneous hardware and operating systems, resulting in incompatibility issues
for application users. We extend the concept of virtualization to provide a set of virtual machines capable of
emulating major operating systems. These virtual machines run on a Virtual Box Web Services in a SOA and are
designed to be tailored to meet the specific requirements of a user through which they can run any software on any
handheld device. Our service provides the user with the ability to make and run major operating systems using cloud
of virtual machines. This allows unlimited portability between different hardware and software architectures if some
minor requirements are met. We present the result of initial testing of running Nokia Symbian application on an
android device.
[M. Aslam, M. Ali, Syed Ahsan, M. Junaid Arshad, Amjad Farooq, M. Shahbaz. Cross-Platform Service for
Nomadic Devices, Life Science Journal. 2012;9(1):603-609] (ISSN:1097-8135). http://www.lifesciencesite.com. 89

Keywords: Handheld Device, Cloud Computing and Virtual Machine

1. Introduction

Cloud computing has somewhat succeeded
in its ability to provide versatile services to users
irrespective of the device hardware (e.g., storage,
computation, and architecture constraints) and
software resources like operating system. The system
running inside the cloud is responsible for all
computing intensive work [1]. Since, cloud
computing is not processor intensive and yet provides
all services of a business or personal needs, this has
encouraged hardware manufactures to make
lightweight, inexpensive, and low cost devices with
just enough capability to run a web browser, the best
examples are Netbooks and Tablets. In the future, we
expect devices to become even smaller and there
would be an increasing trend towards using internet
on handheld devices like Tablets [2]. Cloud usually
follows the economic model in which a user can add
and remove resources dynamically on the cloud and
therefore pay only as much as he needs [3].

Scope of problems that can be solved by
cloud computing is immense for e.g. with cloud, we
can have unlimited storage capacity by adding clouds
of storage services as necessary and as our business
grows. Similarly, we can have the illusion of super
computer on our device by using cloud as a utility
computing. Amazon EC2 [4] provides dynamic
scalability of the cloud within minutes. Besides
numerous advantages, cloud computing also provides
mobility and collaboration to end users [5]

Traditional software like Word and Paint
have now online cloud counter parts that can be used
freely using just a web browser like Google Docs,
adobe Photoshop express, online conversation
services like doc to PDF and back, Online tools to
create virtual machines, etc. When software is used in

this way it is called “software as a service (SAS)”, an
integral part of the cloud architecture.

Virtualization is an art of dividing the
computer into many virtualized systems each with its
own hardware and software architecture. Hardware
virtualization tools such as Intel Virtualization
Technology [6] assist virtualization on Intel
machines. Virtualization was once confined to large
machines and now it is being available on a micro
scale. Handheld users having some hardware or
software constraints can now get benefit from a cloud
virtual machine in order to perform any resource
extensive task.

Till now virtualization for handheld devices
has not acquired widespread due to low computation
power and limited capability of a typical handheld
device. But, gradually we have seen an increasing
number of handheld devices with huge computation
power for e.g. smart devices.

The problem that we tackle in this paper is of
using cloud as a virtual platform for running
heterogeneous mobile platforms.

There are many existing cloud services like
Amazon EC2 [4], Google App Engine [6], Facebook
Platform [7]. Amazon E2 provides a business cloud
platform while Google App Engine provides its users
with a free limited space to run their application
written using python or java language on the Google
engine. Facebook Platform allows users to run
applications on the Facebook platform and taking
advantage of the Facebook API. Facebook platform is
not suitable for developing enterprise and utility
applications.

Currently in most of the popular handheld
devices like Android [8] and iOS [9] a user could only
run the application for which the device has been

Life Science Journal, 2012;9(1) http://www.lifesciencesite.com

604

programmed for. This introduces several problems for
users and also makes it difficult for them to switch to
other device with a different architecture and
platform. Legacy software like critical business and
enterprise applications can’t be ported to other
handheld device with a different architecture. These
problems have motivated us to solve it using a cloud
architecture which is same for any handheld device.

Different mobile devices like Blackberry,
Android and IPhone are in intense competition with
each other. Though, the present trend is towards
Android [10], other platforms will remain significant.
There are millions of people using those platforms
and in the future, we expect some other mobile
platform. All these platforms are not at all compatible
with each other as they are strong rivals of each other.

Millions of applications exist for each of
these platforms and they are not compatible with each
other. The ultimate burden is on the user community
to live with this limitation. For example, a user of
android device has no way to run IPhone application
except by hacking the android platform or by creating
a virtual IPhone device machine. We follow the
second approach to implement our solution.
Unfortunately it’s not possible to create a virtual
machine on a cellular device since it has its own
memory and process limitation. But we can
implement a virtual machine on a cloud that we called
an emulator since its purpose is to emulate an
operating system for running some handheld device
file. Instead of creating a virtual machine for IPhone
or Android Phone, we have created a generic virtual
machine which can host any major operating system
depending on the needs and requirement of a user.

Each of the virtual machine in our cloud acts
as an emulator for a particular handheld device. The
service theoretically allows users to run major mobile
operating system files like Android, Blackberry, and
IPhone IOS. Our virtual machine has been enhanced
specifically to work with mobile platforms.

By using our solution an android user would
be able to run IPhone applications on their device
without even the web browser. Our cloud service
would consist of two parts, a client and a server. A
client run on the device and server reside on the cloud.
Whenever, an attempt is made to run the IPhone
application in an android phone, our client application
detects this and asks the user about whether they want
to run this application by using the online cloud. By
approval from the user, application would be
compiled and run on the VM residing in cloud and its
GUI would be transferred at run time to the mobile
device. It is important to note that only the
computation part runs on the virtual machine since an
application which requires camera can’t be simulated
on the virtual machine. Therefore, a client application

must act as a bridge to provide transparent camera
interface to the virtual machine and to the user. In
other words, all the hardware of the phone like
camera, microphone, and accelerometer must be
simulated on the client side. This adds extra
complexity in implementing such a cloud which we
shall see in the proposed solution section later on.

The motivation for RunIT Cloud comes after
searching the Google for a service which can run
cross-platform mobile code e.g. sis file, so when we
Goggled an online service to run sis files, we couldn’t
find any online service which can assist users in
running mobile files. This is how we developed the
idea in the first place.

The rest of this paper is organized as
follows. In section 2 we highlight and compare some
existing cloud services similar to ours. In section 3
we present our proposed solution and subsequent
details in subsections. In section 4 we present some
of the results of using our service to run Symbian
Operating system sis file on an Android device.
Finally in section 5 conclusions are presented
followed by references.

2. Related Work

GoPC [11] is an online service that provides
its users the facility to access their systems using
clouds. They can use their machines as well as use
the software that is available on the cloud. The users
can access the service using their handheld devices as
well. Together with online storage, scheduled
backups, and the same 128 Bit encryption used by
most banks ensures the highest level of security. You
can build your own cloud platform from GoPC's
products and services. However it provides access to
the complete desktop and may cost more than
services which provide access to only one service
like the online spread sheet. Additionally GOPC
consumes more bandwidth than the service which
provides limited functionality. RunITCloud service
provides the same interface as available on the
handheld device and is accessed only when a non-
native program is executed on the device. This gives
handheld device users the illusion that they are able
to run any program on their device. The RunITCloud
is an attempt to run non native programs on the
handheld devices with the comfort of the native GUI
whereas GOPC provides a desktop environment to
access common services

Amazon Web Services (AWS) [12] also
provide the Elastic Compute Cloud (EC2), in which
customers pay for compute resources by the hour,
and Simple Storage Service (S3), for which
customers pay based on storage capacity.

Other utility services include IBM Blue
Cloud [13] which provides services very similar to

Life Science Journal, 2012;9(1) http://www.lifesciencesite.com

605

the Amazon E2, EMC’s recently launched storage
cloud service, and those offered by startups such as
Joyent and Mosso.

Layered Tech’s virtual machines (VM) [14]
provide high-performance, high-availability
computing resources that are not confined to a single,
vulnerable server. With a virtual machine (VM) your
site or application is implemented across many
nodes. SnowFlock [15] is another system that uses
the fork command for creating multiple virtual
machines. A user can create machines according to
their needs. We have used SnowFlock for
implementing virtual machines in our system.

Intel virtualized computer [16] is another
technology that provides the functionalities of
creating VM’s. It provides facility of creating servers
with security and flexibility.

As we can see cloud services and platforms
are on the rise. Many services and platform exist
which cover the common services from document
editors to graphics application to pc desktop sharing
but none of these services and platform provide an
explicit ability to provide a cloud emulator to run
non-native mobile files.

2.1 Google Trends

If we look at Google trends for the popular
mobile operating systems like Android, Symbian,
IOS, BlackBerry and Java Me we get the results
shown in Fig 1.

Fig. 1: Google Trends for Popular Mobile
Operating Systems

It is obvious from the Google Trend that

Android is the most popular mobile OS in 2011 with
a sharp steep curve. Very close to Android is
Blackberry with a curve steadily going up from 2004
to 2010 but decreasing abruptly in 2011 and just
below the Android. It should also be noted that the
popular IOS operating system has not seen any
worthy growth over the years and lags behind

Android and Blackberry by a significant factors.
Finally Java Me seems to in its last breath as the
interest of user community in Java ME has become
negligible.

3. RunItCloud

Instead of running the program on the
handheld device, we propose that the program should
run on a cloud service and only its interface should
be accessible from the handheld device. This can
theoretically give illusion to a mobile user that the
software is actually running on the embedded device.
However this solution comes with its various
technical and feasibility challenges for e.g. how
different events should be propagated from the
mobile device to the cloud service and vice versa.
Can the user interact with the software interface
being streamed from a cloud service? If so what
would be the screen refresh rate for a smooth
interface playback. Can we stream video quality
refresh rated on a limited handheld limited
bandwidth, memory and computation power. How
would the system compensate for the different
handheld display sizes and resolutions? .Before we
attempt to answer these important questions, we want
the reader to have some reality check. Our solution is
not the ideal one, it’s in no way alternative of the real
device, and it attempts to provide a solution so that
software written for platform A can run successfully
on platform B provided there exist a Virtual Box
service for it.

We propose a service oriented architecture
to provide a set of services each running an instance
of VirtualBox Web Services as shown in Fig 2.

VirtualBox is a popular open source virtual
machine solution through which we can run many
different operating systems on a single host
computer. Solutions like VirtualBox abstract the
hardware and operating system of the host computer
into several executing environments. Very similar to
VirtualBox is a commercial software solution called
VMware. However VMware is not an open source
solution and is therefore not suitable for customizing
it to our needs. VirtualBox on the other hand
provides comprehensive support and access to its
internal Virtual Box Main API. Using VirtualBox
Main API an application user could develop a
program which can create, run and delete virtual
machines on the fly and also interact with the virtual
machine guest operating system by providing a full
set of API. Besides that Virtual Box provides Web
Services which provide full access to the Virtual Box
Main API.

Fig 2 shows the architecture of the
RunItCloud, a handheld device user downloads a
portion of the RunItCloud client program which

Life Science Journal, 2012;9(1) http://www.lifesciencesite.com

606

provides mobile specific implementation to access
the RunItCloud service. A mobile specific program is
responsible for discovering the services of the mobile
like GPS, Accelerometer, and Cam etc and
determines whether they are compatible with the
service. In other words the client portion of the
RunItCloud aims to provide a bridge between the
mobile and the RunIt Service. In Fig 2 three layers of
services are shown and only the top layer “Service 3”
is visible. A mobile user can’t directly access any of
these services. These layers of services are added for
flexibility and load sharing purpose. Client program
can only access the main server which contains the
core implementation of the RunItCloud Service. The
main server is responsible for dynamically allocating
available web service to the mobile user and keeping
track of which mobile web service is being used by a
specific mobile device. This provides the additional
architecture flexibility of the SOA as new VirtualBox
web services could easily be added without any
significant implementation and architecture changes.
Each VirtualBox web service container can hold one
or more virtual machines each running a specific
operating system.

VirtualBox web service provides access to
the major desktop operating systems like Windows,
Mac, and Linux and mobile operating systems like
Android, iOS. Most of the mobile versions running
inside VirtualBox are only a stripped up version
containing only the major features with core kernel,
applications and GUI.

3.1 System Architecture
Our cloud architecture (see Fig. 2) is based on
Service oriented Architecture. There are number of
services each with its own VirtualBox web services
instance. A client such as an Android device or a PC
can only access the service through a RunItCloud
main server.TCP/IP indicates that connections could
be either wired or wireless. Initially a client connects
to the Main Server which is running the main
instance of the RunIt system. Main Server is hosted
on a public IP server and can be accessible by using
the host name and port number. This system is
responsible for selecting the appropriate service and
routing the client connection to the appropriate
service. A client is unaware of the service it is using.
This architecture is flexible; more services can be
added on demand to satisfy a large number of users.
Each service can only contain a limited number of
virtual machine instances and each virtual machine
instance can only run a single operating system such
as Android OS or windows. Fig 2 shows detailed
cloud architecture in which some consumer device
(mobile phones, laptops, etc.) are consuming one of

the cloud services each running with its own virtual
machine and running on the cloud container.

Each service has its own instance of the
Virtual machine which is shown by rectangular layers
of screens and works independently.

Fig. 2: RunItCloud Architecture Diagram

3.2 System Components

RunItCloud is divided into components as
shown in Fig 3.The top layer is the Main API
interface and provides access to core features of the
system. Clients and users could only access this top
layer to use the RunIt services.

Fig. 3: RunItCloud Components

Main system consists of Load Sharing,

Controller and Service Tracker. Load Sharing is
responsible for dynamically sharing the clients load
over the services so that the system appears to run
smoothly when the traffic increases. Running a
virtual machine on hardware is an extremely
expensive process and it’s not possible to run many
virtual machines on the same physical hardware.
Load sharing provides the necessary flexibility so
that users can enjoy a continuous reliable service by
dynamically consuming the next free service to
provide the maximum throughput.

The Controller is the center hub and
performs the controlling functions on the service
tracker and load sharing. It is responsible for

Life Science Journal, 2012;9(1) http://www.lifesciencesite.com

607

managing other components. Finally Service Tracker
is responsible for profiling and keeping information
about which service has been assigned to which
client. Service Trackers also provide cache of the
programs that the client has used previously and
Controller first checks with the Service Tracker to
determine whether the program should be transferred
from the client to the web service. Database is used to
provide storage, service related and configuration
information and is directly accessible from the
controller.

3.3. The Display

The RunIt service can be used to emulate
different kinds of operating systems and versatile
type of software such as real time systems and games
can be requested by the client devices. Since the
program that user is trying to run is incompatible
with the user native device, therefore it must run on
one of the RunIt services. If the RunIt service
recognizes the software and runs it successfully, it
must send the result back to the client. Naturally, the
result is an image containing the GUI of the program.
However it’s not just an image, it’s a series of images
that are sent at regular intervals based on the
following algorithm.
i). Determine the type of the program game,

simulation or a static application.
ii). Intelligently calculate the refresh rate of the

virtual machine screen by noting the movements
at a video rate. This is done by continually
scanning the program after every 50 milliseconds
and noting down the difference from the earlier
image sequences. If no difference is found the
program is probably an application and only has
static content waiting for the user to interact with
it.

iii). For a static software, RunIt service only send a
single image and waits for some action from the
client side such as click of a button. For video, it
continually transmits 25 frames per second or
less depending on the buffering rate of the client
internet connection. This rate can be manually
adjusted by the mobile user or determined by
benchmarking the user mobile internet
bandwidth.

The display is therefore based on the illusion that
the application is running in real time on the client
device when actually it’s just a streaming. This
approach may seem quite complicated, but in reality
it is quite feasible due to the faster internet mobile
internet connections.

3.4. The Client Part

The client part is small software written
specifically for each of the mobile platform and

contains the platform specific logic. The client part
acts as a bridge between the cloud service and the
user mobile device. It’s a connector to the advance
features of the RunIT service as it provides interface
to the user mobile storage access, I/O device access
like camera, microphone, GPS and accelerometer.
Device hardware for e.g. GPS is associated with a
java interface and a platform specific client program
must implement the interface to allow the main
server to access the hardware features. Standard
interfaces for hardware devices have been provided
to on the service as well as on client side. To
illustrate it let us consider a user tries to run a non-
native program which needs the GPS to work
properly. For example program may need a GPS
location to pinpoint the location of the nearest
restaurant. Obviously GPS can’t be emulated on
service side. Therefore, such information must come
directly from the consumer hardware device in this
case a GPS. The server ends a GPS request to the
client, the client either denies or accept the request if
GPS is available and has been implemented by the
client program. The serve uses the GPS specific
interface to request any feature of the GPS hardware
on the client side. The result of the GPS hardware is
sent back to the server periodically. The client
actually starts a separate thread as a callback function
and also uses the timer to periodically sent the device
specific data. A separate client/server connection is
established for each hardware device to be used. The
client part handles all the low level details and
provides the GPS data to the service whenever the
service requests it to do so. Currently client part is
available for only two mobile platforms that is
Android and BlackBerry.

3.5 Remote Desktop Streaming

Once a client program requests a non-native
program to run on the cloud service, the main server
runs the program on a free service and starts the
virtual machine. The interface of the virtual machine
then must be streamed over a TCP/IP connection
back to the client. Fortunately Virtual Box web
control provides a component called VRDB Server
whose purpose is to provide a remote desktop access
to the RDB client. Virtual Box VRDB also supports
the keyboard and mouse events interaction from the
RDB client. We implemented the RDB client on the
client part of the RunIt cloud to stream the remote
desktop.

3.6 Program Run Information

Program run information is a set of fields
extracted by RunIt service and contain general
information about the device and Platform. The
device information includes the type of device, the

Life Science Journal, 2012;9(1) http://www.lifesciencesite.com

608

manufactures of the device, the SIM information for
the device, etc. Platform information consists of
operating system, supported file types, version, and
supported hardware features like GPS, CAM. It also
includes information about the SDK of the platform
for which the program is written. This information is
used to prepare the system to determine which OS
emulator should be called upon.

3.7 Mechanism

What exactly happens when a user tries to
run a non-native application? Simply starting a
virtual machine with a specific operating system
running is not very useful as the operating system
can’t access the user mobile program and therefore
can’t run it. Ideally a user should be able to click on
the non-native application and somehow the
application should start running automatically on the
user device. This is accompanied using the following
steps.

i). User clicks on the non-native application or
browse it using the RunIt client software.

ii). RunIt client tool determines the device,
program run information etc.

iii). Client tool connects with the RunIt Main
server and checks with the Service Tracker
component if the program code is available on
the service. If the program code is available
move to point 5.

iv). Client tool establishes a file transfer session
with the main server and transmits the
program code on the main server. Main server
saves the program name and version
information in its internal database.

v). Main Server then shares the program code
with the service Virtual machine so that it is
visible to the guest operating system. This uses
the VirtualBox shared folders feature which
are provided exclusively to shared data
between guest and host operating systems.

vi). Using VirtualBox SDK Events Management,
the main server simulates the click event on
the program file in the shared folder to start
the program on the virtual machine.

vii). Main Server configures the VirtualBox VRDB
server to transmit the remote desktop of the
virtual machine to the client device.

If all of the above steps are successful a user of the
client device gets the illusion that the program is
actually running on the client device when it’s in fact
running on the cloud VM.

4. Use-Case: Run Android On Iphone

We have tested our system for mobile
platform interoperability. The device which was used

as the host platform was HTC Android G2 cell phone
as shown in Fig 4.

Fig 4: RunIT Cloud Client Application

The goal was to run the Symbian mobile

application with extension “SIS” on this phone. The
phone had a 400-600Kbit/s EDGE based internet
access enough to stream a 3 inch video at low detail.
As shown in the Fig 4, user clicks on the browse
button and selects the sis file. By default any user
who tries to run this file gets an error message that
device does not support this file.

The client part of our service can be
downloaded for each different mobile operating
system and is optimized to run on that platform. After
installation of the client part and assigning it
necessary internet download permission, we again try
to run the sis file. This time we get a prompt asking
the user that running this file may cost you air time.
With permission from the user, the client part
prepares HTTP connection and connected to our
RunIT service passing it the device information and
program code. The RunIT service determines that the
device operating system is Android and program
code can be run in Symbian emulator, it emulates the
suitable version of the Symbian emulator and
calculates the refresh rate of the screen from which it
determines that it doesn’t contain much screen
refreshes and runs it in application mode by
transmitting one file after every 2 seconds threshold
which can be adjusted. It important to note that the
screen refresh calculation which is simply a standard
motion detector between two or more consecutive
screen frames is done entirely on the server side and
is not visible to the client. However client part must
be able to receive data at any time as in order to
handle varying chunks of data from the server. This
is due to when most of the application starts, this first
screen is mostly a static interface waiting for user to

Life Science Journal, 2012;9(1) http://www.lifesciencesite.com

609

interact with the .Due to this reason, and our system
fails to classify the application as an interactive
process and transmits a single screen after every 2
seconds.

However there is a catch that we have
incorporated in the system. After 50ms the system
again checks the refresh rate of the screen using a
difference between previous screens and the new
screen for a specified time to calculate the screen
repaint rate. This time it classifies the application as
an interactive process based on the varying screen
repaint rate. As a result the system sends a stream of
screens after 33 ms to meet the 30 frames/sec
requirement of the smooth video. Then, after every
50ms the system again evaluates the program to see if
it has changed its behavior to a static or dynamic
program. This is important because we want to make
the system efficient and send the screen only when it
is required based on principle of least privilege
resulting in less bandwidth usage.

So based on the application the system
intelligently determines the repaint rate and
accordingly classifies the running file. However there
is no formal classification of the application other
than interactive or background processes. The goal is
to determine the FPS of the application so that only
necessary frames should be sent back to the handheld
device saving bandwidth and computation.

5. Conclusion

RunIT Cloud service allows users of
different platforms to run each other software using a
set of virtual machines running on the cloud
supporting major operating systems. For instance, an
android user can run Symbian applications on his
device without a dedicated Nokia set. Our cloud
service consists of two parts, a client and a server.
The client runs on the device and server reside on the
cloud. This is a new approach as it allows the user to
run non-native application from the comfort of the
native GUI of the device. However there are obvious
challenges to this approach, the most notable is to
find a suitable version of the operating system image
which can run the file user is trying to execute. Also
the Operating system image should be compatible
with the Virtual box system. The use case
demonstrated our solution can be used to solve real
world problems. Additionally the experience of
people who were deliberately not told about the
emulator was noted and necessary steps were taken to
make the system feel more real. In future, the support
of more operating, statistics and usage feedback of
the service would be added.

Acknowledgments

This research was supported by the Directorate

of Research Extension and Advisory Services U.E.T.,
Lahore-Pakistan.

References
[1] Michael A., Fox, A., Griffith, R., Anthony D., Randy, J.

K., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., Zaharia, M., “Above the Clouds: A Berkeley
View of Cloud Computing”., Technical Report EECS-
2009-28, EECS Department, University of California,
USA., Feb. 10, 2009.

[2] Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G.,
Vakali, A., “Cloud computing: Distributed internet
computing for it and scientific research, Int. J. of IEEE
Internet Computing, Vol. 13, No. 5, pp. 10–13,
published by IEEE Computer Society, USA., 2009.

[3] Dean, D., Saleh, T., “Capturing the value of Cloud
Computing”, white paper available at
http://www.bcg.com, November, 2009.

[4] http://aws.amazon.com/ec2/
[5] Hayes, B., “Cloud computing”, Communications of the

ACM, vol. 51, no. 7, pp. 9–11, July 2008.
[6] Ciurana, E., “Developing with Google App Engine”

published by Apress, Berkely, CA,USA, 2009.
[7] Hickey, M., “Facebook launches Facebook Platform;

They are the Anti-My Space”, available at
http://www.techcrunch.com/2007/05/24/ facebook-
launches-facebook-platform-they-are-the-anti-myspace/
consulted on September 07, 2011.

[8] Rogers, R., Lombardo, J., Mednieks, Z., Meike, B.,
“Android Application Development: Programming with
Google SDK”, edition 1, published by O’Reilly Media,
UK., May 20, 2009.

[9] Patel, N., “ iPhone OS 4 renamed iOS”, available at
www.engadget.com retrieved on June 09, 2010.

[10] Chakraaborty, P., “Android to Become No. 2
Worldwide Mobile Operating System in 2010 and
Challenge Symbian for No. 1 Position by 2014”, blog
posted at http://www.pctelecoms.blogspot.com on on
Sep. 12, 2010.

[11] http://www.gopc.net accessed on April 2011.
[12] http://aws.amazon.com accessed on Feb. 19 2009.
[13] http://www.ibm.com/cloud-computing/us/en/ access on

April 2011.
[14] http://www.layeredtech.com/cloud-computing/virtual-

machine-hosting/ retrieved on April 25, 2011.
[15] Andres, H. L. C., Whitney, J. A., Scannell, A. M.,

Patchin, P., Rumble, S. M., Lara, E., Brundo, M.,
Satyanarana, M., “SnowFlock: Rapid Virtual Machine
Cloning for Cloud Computing. In proceeding EuroSys’
09, 4th ACM European Conference on Computer
System, held in Nuremberg, Germany, March 2009.

[16] Uhlig, R., Neiger, G., Rodgers, D., Santoni, A. L.,
Martins, F. C. M., Anderson, A. V., Bennett, S.M..,
Kagi, A.., Leung F.H., Smith,L., “IntelVirtualization
Technology”, IEEE Computer, vol. 38, no. 5, pp. 48-56,
May 2005.

2/9/2012

