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Abstract: The concept of renewal variable associated with a non-negative random variable X is used to identify the
distribution of X as well as its failure rate. Some illustrated examples are given.
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Introduction

Let X be a non-negative random variable (often
represents the life of a unit in a certain process)with
finite mean p, cdf F; (.) and survival function £.(.). A
new random variable Y with density function f:(.) can
be defined (see, e.g., Cox ) as follows:

fr) =22 (1.1)

The random variable Y has many applications in
life length studies (see, e.g., Scheaffer %) as well as in
renewal Process (Zacks *)). Gupta * has shown that
for large values of X, the random variable Y represents
the life of the process when an operating component is
replaced upon failure by another possessing the same
life distribution. Pakes and Khattree ) have
demonstrated that Y is related to the length biased
sampling.

Moreover, several authors have used Y to
characterize some probability distributions. Huang
and Lin © have characterized the exponential
distribution using a relationship between the k™
moments of Y and X. Gupta  has given an explicit
formula of the cdf of X in terms of the failure rate of Y.

The main objective of this note is to identify the
distribution of X as well as its failure rate function in
terms of the mean residual life and failure rate
functions of Y.

1- The Main Result.

The following Theorem determines the survival
function of X as well as its failure rate in terms of the
mean residual life function of Y.

Theorem 2.1

Let X be a non-negative continuous random
variable with finite mean p, failure rate #(.), density
function fi-(.) and survival function F (.). Denote by Y,
its associated random variable defined by (1.1).
Assume that g(.) is the mean residual life function of
Y, then
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For some constant ¢ to be determined from F, (0) =1
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Proof. Using (1.1), the survival function F,(x), of Y
will be:

F=ut [ F@dz 2.3)

By definition, the mean residual life function of Y
(Hall and Wellner 7)) is given by:
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Using (2.3), we get:
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Differentiating (2.5) with respect to x, we get:
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Integrating both sides of (2.6) with respect to x, we get:

dx
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For some constant ¢ to be determined using F.(0) = 1.
Differentiating (2.7) with respect to x, we get:
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To prove the 2" result, take the logarithm of both
sides of equation(2.8),we get:

InFy (x)=lne-2ln gy (x H+n(l + gp(x)) —f

dx
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(2.9)

Differentiating (2.9) with respect to x and recalling that
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Our proof is complete.
Remark (2.1)

Denote by #-(.) and gy (.), the failure rate and
mean residual life function of the renewal variable
respectively and recalling that (Ruiz and Navarro ‘*)

7 (X) gr(x) = 1 + gy (),
then the 2™ part of Theorem (2.1) can be written as

follows:
() =20 - (g )™ (1+ £22
Ty (2]
Examples
(1 If gv(x) = k = constant, then equation (2.1)
gives:

x>0

B () =exp (-3),

Also equation (2.2) gives *y(x) =constant, which is the
well known result of the exponential distribution.

@ It g=22 .  0<asx, 0>2
Then equations (2.1) and (2.2) give:

_ ;b .5 _8
Fx)= (517, 0<asx n(x) =5

Which are the well known results for the general
Pareto distribution with parameters a, b, and 6.
3) If gy(x):$, a< x<b, 6>0.
Then equations (2.1) and (2.2) give:

F(x)= (I=¥e

EE(X) - :El {EJ-I::]

T (X) = hex

Which are the well known results for the 1% type
Pearsonian distribution with parameters a,b, and 6 > 0.
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Remarks

(1) Similar results for the uniform distribution with
parameters a, b can be given. To see this, put 6 = 1 in
the last example.

(2) Similar results for the beta distribution with
parameters I,m can be obtained. To this end, put 6=
m, b =1 and a= 0 in the last example.
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