
Life Science Journal, 2011; 8(4); http://www.lifesciencesite.com

 394

Provably Secure Password-based Three-party Key Exchange Protocol with Computation Efficiency

Jih-Ming Fu1, Jeng-Ping Lin2, Ren-Chiun Wang3*

1 Department of Computer Science & Information Engineering, Cheng Shiu University, No.840, Chengcing Rd.,

Niaosong Dist., Kaohsiung City 83347, Taiwan (R.O.C.)
2 Department of Commerce Technology & Management, Chihlee Institute of Technology, 313, Sec. 1, Wunhua Rd.,

Banciao District, New Taipei City, 22050 Taiwan, R.O.C
3 Project Resource Division, Institute for Information Industry

rcwang@icst.org.tw

Abstract: Going along with the rapid development of web technologies, people can make a great quantity of service
requests to service providers using mobile devices anytime and anywhere. However, the service requester and the
service providers may not trust each other and they may locate at different domain. They require a communal trusted
third party to help them establish a shared session key for secure communications. It is so-called three-party key
exchange. Recently, many password-based three-party key exchange protocols were proposed against various
well-known security threats. In those protocols, to prevent the password guessing attack, a widely used way is to
employ public-key and/or symmetric-key cryptosystems to protect the exchanged messages. As we known, the
encrypted and decrypted operations in a public-key cryptosystem are time-consuming. In this paper, we propose a
password-based three-party key exchange protocol with the computation-efficiency without using public-key
systems. Finally, we prove the security of the proposed protocol in the random oracle model.

[Jih-Ming Fu1, Jeng-Ping Lin2, Ren-Chiun Wang. Provably Secure Password-based Three-party Key Exchange

Protocol with Computation Efficiency. Life Science Journal. 2011; 8(4):394-401] (ISSN:1097-8135).

http://www.lifesciencesite.com.

Keywords: cryptography; discrete logarithm problem; on-line undetectable password guessing attack; three-party
key exchange.

1. Introduction

Today, people have many opportunities to obtain
services or resources from application servers by
using their mobile devices through the Internet.
However, both of the clients and the servers may be
distributed over different network domains and do
not win the trust each other. A secure mechanism has
to make sure that the identity of the clients and the
server can be authenticated each other and the
communications are secure against an unauthorized
user from eavesdropping the delivery contents[1-2,5].
The client and the application server require a
communal trusted third party[3-4,17].

Password is widely employed to construct a
secure key exchange protocol since password-based
protocols are easily to be developed and to be
maintained. However, users have to worry about
whether their passwords (have low entropies) have
been guessed or not. The password guessing attacks
can be divided into three kinds[11-12]:

1. On-line detectable guessing attack. Attacker
can enumerate all the candidature passwords and
pick up one from the list. Then the attacker sends the
chosen password to connect the server and verifies
the server's response in on-line. Most
password-based protocols can prevent this attack by

the server limits the fail times.
2. On-line undetectable guessing attack. Attacker
can enumerate all the candidature passwords and
pick up one from the list. Then the attacker sends the
chosen password to connect the server and verifies
the server's response in on-line. Since the server
cannot discriminate whether the request is malicious
or honest, therefore the server always replies a honest
response. The attacker can catch this chance to guess
the password until the password is correctly
obtained[23].

3. Off-line guessing attack. Since the
communicated channel is open, any eavesdropper
can collect all the communications. Then the attacker
can enumerate all the candidature passwords to
launch the attack off-line until a hit is obtained
without the help of the server.

Many password-based three-party key exchange
protocols were proposed and addressed to overcome
the above guessing attacks by using the concept of
public-key and symmetric-key techniques[10-11,19-20,26].
For enhancing the efficiency dramatically, in 2007,
Lu and Cao proposed a simple three-party key
exchange protocol[21] without using the server's
public key. Unfortunately, Lu-Cao's key exchange
protocol suffered from the unknown key sharing1, the
on-line undetectable guessing, and the impersonation

Life Science Journal, 2011; 8(4); http://www.lifesciencesite.com

 395

attacks[12,15,18,23]. For guaranteeing the quality of
communication services, low communication and
computation cost is required in a three-party key
exchange protocol. In 2009, Huang[16] proposed an
efficiency-enhanced password-based three-party key
exchange protocol. Huang claimed that the proposed
protocol is also more efficient than Lu-Cao's protocol
and can be applied in practice. However, Huang's
protocol is still not secure against the on-line
undetectable guessing attack[25].

We propose a provably secure password-based
three-party key exchange protocol to withstand
various well-known security threats by using the
random oracle model[3,11,22]. Compared with the
related protocols [10-11,20], our proposed protocol is
computation-efficient.

In the next section, we first give a notation of
security. In Section 3, we propose a novel three-party
key exchange protocol. In Section 4, we analyze the
security of the proposed protocol. In Section 5, we
analyze the efficiency among our proposed protocol
and the related protocols.
1 An unknown key-sharing attack on a key Finally,
we conclude this paper in Section 6.exchange
protocol which provides the key confirmation
property is an attack whereby an entity A believes
that she shares a session key with the communicated
entity B. Unfortunately, it is fact that if the entity B
mistakenly believes that the session key is instead
shared with another entity E, where E  A. A secure
key exchange protocol should be against this
threat[6,8].

2. Notations of Security

We first define some hard mathematical
problems and security of a password-based
three-party protocol.

2.1 Hard Problems
1. Definition 1. Discrete Logarithm Problem
(DLP). Given two elements g and ga, it is
computationally infeasible to find a, where p is a
large prime number, g is a generator with order q in
GF(p) and a  Zq

*.
2. Definition 2. Computational Diffie-Hellman
Problem (CDHP). Given three elements g, ga, and
gb, it is computationally infeasible to calculate gab,
where p is a large prime number, g is a generator
with order q in GF(p) and both of a and b  Zq

*.
3. Definition 3. Decisional Diffie-Hellman
Problem (DDHP). Given four elements g, ga, gb, and
gc, it is difficult to decide whether c mod q is equal
ab mod q, where p is a large prime number, g is a
generator with order q in GF(p) and all of a, b and c
 Zq

*.

2.2 Security Definitions
The concrete security of a three party-based

protocol is built up both the property of the session
key indistinguishability and the protection of the
password[7,22]. In a password-based protocol, an
on-line detectable guessing attack[14] is inherent and
is inevitable. However, this attack can be prevented
by locking the account after some reasonable failed
attempts in most password-based protocols. A more
dangerous attack is the off-line guessing attack after
an adversary copies a transcript of executions in a
password-based protocol. The mission of a
password-based protocol is to rule out the off-line
guessing attack and to limit the adversary only to the
on-line detectable guessing attack. For thwarting the
online detectable guessing attack, the service
requesters' requests are required to be authenticated
for the operations of the trusted server from
distinguishing malicious attempts from real requests.
Also, for deterring the on-line undetectable and the
off-line guessing attacks, the proposed protocol has
to live up to the requirement of attackers that they
may pick up the correct password but cannot verify
their guessing from the eavesdropped messages.

We denote the proposed protocol, a service
requester CA and a service provider CB  Ĉ = {C1, ...,
CNC} and a trusted server S. Each service requester
CA and a service provider CB  Ĉ hold memorial
passwords pwA and pwB, and the server S maintains a
password table <P1,, PNC>. We also assume that an
adversary AD who controls all the communications
that take place by CA

i, CB
j and S is a probabilistic

machine, where we denote that CA
i is the ith instance

of the service requester CA and CB
j is the jth instance

of the service provider CB. AD can interact with all
the participants (CA, CB, S) through the following
oracle queries.

1. Execute(CA
i, CB

j), Execute(CA
i, S), Execute(CB

j,
S): We use this query to model passive attacks where
an attacker can eavesdrop all the communications
between the instances (CA

i, CB
j) and between the

instances (CA
i, S), and (CB

j, S) respectively.
2. SendClient(CA

i, m): We use this query to model
an active attack against that the attacker sends a
message m to a participant CA at the ith instance.
Then query outputs the result of CA from receiving
the message m to generate.

3. SendServer(m): We use this query to model an
active attack against that the attacker sends a
message m to the server S. Then query outputs the
result of S from receiving the message m to generate.

4. Reveal(CA
i): We use this query to model an

active attack against the known-key attack at the ith
instance CA. The query says that if the instance does
not accept the session key, the output is ; otherwise,
the output is the real session key.

Life Science Journal, 2011; 8(4); http://www.lifesciencesite.com

 396

5. Corrupt(CA): We use this query to allow that an
attacker AD can corrupt the complete internal state of
an entity CA.
6. Test(CA

i): If an attacker AD queries this oracle
and no session key for CA

i  Ĉ is accepted, this
oracle outputs ; otherwise, the oracle flips a coin b.
If b = 1, returns the real session key; if b = 0; returns
a random key which has the same key with the real
session key.

The security definition of the proposed protocol
depends on the partnership and freshness of oracles,
where the partnership of the oracles is defined using
the session identifiers sids and the partnership is
defined to restrict the adversary's Reveal and Corrupt
queries. If the partnership is not accepted by the
oracles, the adversary is trying to guess the session
key.
1. Partnership: We say that two oracles CA

i and CB
j

are partners, if and only if both of the oracles have
accepted the same session key with the same session
identifier and they have agreed on the same set of
exchanging messages. Besides CA

i and CB
j, no other

oracles have accepted with the same session
identifier.
2. Freshness: We say that two oracles CA

i and CB
j

are fresh if and only if the oracle CA
i has accepted

another partner oracle CB
j, the oracle CB

j has
accepted another partner oracle CA

i, and all the
oracles CA

i and CB
j have not been sent a Reveal query

a Corrupt query.
3. Session key security: We use the standard
semantic security notation to model this property[22].
The security of session key is defined that the
adversary who wants to discriminate a real key from
a random one in the game G is indistinguishable,
where the game played between the adversary AD
and a collections of Ux

i oracles. The players Ux  Ĉ
and S and instances i  {1, ..., NI}. AD runs the game
G with the following stages.
 Stage 1: AD is allowed to send the
queries (Execute, SendClient, SendServer, Reveal
and Corrupt) in the game.
 Stage 2: During the game G, at some
point, AD can choose a fresh session and end a Test
query to one of the fresh oracles CA

i and CB
j for the

testing. Depending on the unbiased coin b, AD is
given ether the actual session key K or a random one
from the session key distribution.
 Stage 3: AD can continue to send the
queries to the oracles Execute, SendClient,
SndServer, Reveal and Corrupt for its choice.
However, AD is restricted to send the Reveal and
Corrupt queries to the oracles for its test session.
 Stage 4: Eventually, AD winds up the
game simulation and decides to output its guess bit
b'.

The success of AD from breaking the protocol
in the game depends on passwords which are drawn
from a dictionary D and is measured in terms of the
advantage of AD from distinguishing whether the
received value is the real key or a random one. Let
AdvP,D

G,AD(k, qfake-C) be the advantage of AD and the
advantage function be be defined as follows.
AdvP,D

G,AD(k,qfake-C)=|Pr[b'-b]-qfake-C/N–1/2*(N-qfake-C)
| (1)
where k is a security parameter, N denotes the size of
the dictionary D and qfake-C denotes the number of
attempts of the adversary from faking the client.
After qfake-C times of faking the client, the intuition of
the formulation is that the advantage of the adversary
from finding the correct password and from faking
the session key successfully should have the
probability at most qfake-C/N. The rest of
non-successful faking cases could have the
successful probability 1/2.

Password protection: An adversary may try to
guess the password of a valid client and verify its
guess through the interaction with the server or the
client or from the intercepted messages. We require
that the protocol has to provide the explicit
authentication of a client's request for thwarting the
online detectable guessing attack in which the server
can do some actions such that the limitation of
invalid request attempts cannot exceed the
pre-defined threshold. Security against the adversary
from launching the off-line guessing and the online
undetectable guessing attacks, the protocol should
not provide any advantageous information to
outsiders or to a curious partner to verify its guess.

Definition 4. We say that a password-based

three-party key exchange protocol is secure in our
model when the following requirements are satisfied:

1. Validity: Among three oracles (CA
i, CB

j, S), the
oracles (CA

i, CB
j) accept the same session key in the

absence of an active adversary.
2. Session key indistinguishability: For all

probabilistic, the advantage of the adversary AD is
negligible within a polynomial time.

3. Explicit authentication: As the above mentioned,
the protocol should make sure that the explicit
authentication of two communicated parties is done
for being against the online detectable guessing
attacks.

4. Password protection: As the above mentioned,
the protocol should not provide any advantageous
information to outsiders or to a curious partner to
verify its guess for being against the off-line guessing
and the undetectable online guessing attacks.

3. Our Proposed Protocol

In our protocol, we define h1() and h2() are

Life Science Journal, 2011; 8(4); http://www.lifesciencesite.com

 397

secure cryptographic one-way hash functions and we
will model the functions as random oracles in the
security proof. The other parameters are introduced
as follows:
A. The system selects a large prime number p,
where (p - 1) has a prime factor q.
B. Let g be a generator with order q in GF(p).
C. TS denotes the trusted third party.
D. A and B denote two communicated parties.
E. pwA and pwB denote the passwords that A
shared with TS and B shared with TS, respectively.
F.  denotes an exclusive OR operation.
G. For simplicity, all the exponentiation
operations are under the modular p such as gx mod p
 gx.
1. Request that initiator A selects a random number
x, calculates RA = gx  h1(pwA, A, B, sid), and sends
(A, sid, RA) to the responder B, where the sid denotes
the session identity.
2. Upon receiving the request, B also selects a
random number y, calculates RB = gy  h1(pwB, A, B,
sid), and sends (B, RB) with A's request to the trusted
server TS.
3. (a) Upon receiving (A, B, sid, RA, RB), TS
employs the passwords pwA and pwB to extract the
exchanged information gx and gy, respectively. Then
T selects three random numbers (z1, z2, z3) and

calculates (a, b, c, d), where a= 1xzg , b= 1yzg ,

c= 2zg , and d = 3zg .

(b) TS sends (A, sid, ZA1, ZA2) and (B, sid, ZB1, ZB2) to
A and B in parallel, where ZA1 = b  h1(pwA+1, A, B,
sid), ZA2 = c  h1(pwA+2, A, B, sid), ZB1 = a 
h1(pwB+1, A, B, sid), and ZB2 = d  h1(pwB+2, A, B,
sid).
4. Do in parallel
(a) Upon receiving (B, sid, ZB1, ZB2), B employs
h1(pwB+1, A, B, sid) and h1(pwB+2, A, B, sid) to
recover a and d. B then calculates the session key K
= h2(A, B, sid, ay), SB1 = h1(A, B, sid, K) and SB2 =
h1(A, B, sid, dy, a). B sends SB1 to A and SB2 to TS for
identifying the validation of its identity and the
session key.
(b) Upon receiving (A, sid, ZA1, ZA2), A employs
h1(pwA+1, A, B, sid) and h1(pwA+2, A, B, sid) to
recover b and c. A then calculates the session key K =
h2(A, B, sid, bx), SA1 = h1(A, B, sid, K+1) and SA2 =
h1(A, B, sid, cx, b). A sends SB1 to B and SA2 to TS for
identifying the validation of its identity and the
session key.
5. Do in parallel
(a) Both of A and B can authenticate each other by
checking the validation of SB1 and SA1 and believe
that the owned session key is fresh.
(b) Upon receiving A and B's responses, TS can

check the validation of SB2 and SA2. If any of the
conditions does not hold, TS will return "connection
failure" message to the corresponding parties and
increase the fail times by one. We introduce the
proposed protocol in Figure 1.

Figure 1. The proposed protocol

4. Security Analysis
In this section, we analyze that the proposed

protocol is secure against some well-known attacks.
Before our analysis, we first assume that the
following mathematical problems are hard to be
solved[9,13].
4.1 Analysis

1. Session Key Security.

(a) Even if a = 1xzg and b = 1yzg are known by an

adversary, based on the difficulty of the CDHP, the

adversary cannot derive the session key K = 1xyzg

except the parties A and B.
(b) Based on the properties of one-way hash function
and the exclusive-OR operator, the adversary is
useless to derive (gx, b, gy, a) without the knowledge
of A and B's passwords. The reason is that the
extracted values cannot be verified. The adversary
wants to discriminate (gx, b, gy, a) from (RA, RB, ZA1,
ZB1), the probability of obtaining the session key K is
equivalent to solve the CDHP on (ZA1, SA1, ZB1, SB1).

2. Replay Attack. An adversary who wants to
imitate the requester A can resend the used messages
(RA = gx  h1(pwA, A, B, sid)) to B or to TS and
expect to obtain some useful information from TS

such as (ZA1 = 1yzg  h1(pwA+1, A, B, sid), ZA2

= 2zg  h1(pwA+2, A, B, sid)). Based on the CDHP

assumption, the adversary not only cannot derive

new session key K = 1xyzg without the knowledge of

the ephemeral keys x, but also cannot win the trust of
TS without the knowledge of the passwords pwA

since 2zg is encrypted using the password pwA.

3. Impersonation Attack. In Round 3 of our

Life Science Journal, 2011; 8(4); http://www.lifesciencesite.com

 398

proposed protocol, when someone sends the
exchanged messages to TS, TS always returns the
messages (ZA1, ZA2, ZB1, ZB2) back. The adversary can
catch this chance to launch the attack. Note that TS
waits the responses in Round 4. Since all the
exchanged messages must be encrypted using the
password independently, the adversary cannot know
whether the guessed password is correct or not and
also cannot judge whether the received message SB1
and the computed results (SA1, SA2) are correct or not.
Based on the difficult of the CDHP, this way is
blocked.
4. Password Guessing Attack.
(a) On-line detectable guessing attack. In current
systems, there is a standard mechanism to defeat this
attack. The solution is that the remote server logs and
counts the number of trial failures. If the number is
larger than the pre-defined threshold values, the
server stops the connection. This concept can be
applied to our protocol since TS verifies whether A
and B's responses (SA2, SB2) are correct or not in
Round 4 and records the failure times.
(b) On-line undetectable guessing attack. To launch
the attack successfully, the attacker has to get some
useful information in advance for manipulating the
data and verifying their guess on TS's response (or
B's response). The attack cannot work on our
protocol since all the requests have to be sent to TS
and TS will wait the feedbacks from both of A and B.
It implies that any trial process will be detected by TS.
The attack fails.
(c) Off-line guessing attack. All the exchanged
messages are encrypted using the passwords
independently. The goal of the adversary is to guess
the password and to verify the correctness on the
intercepted messages. Based on the difficult of the
CDHP, the adversary cannot employ the guessed
password and derive messages to obtain any results
on the messages (SA1, SA2, SB1, SB2) in Round 4.
5. Forward/Backward Secrecy.
(a) In each session, A, B and TS select their
ephemeral keys (x, y, z1, z2) to construct (RA = gx 
h1(pwA, A, B, sid), RB = gy  h1(pwB, A, B, sid), zA1 =
b  h1(pwA+1, A, B, sid), zB1 = a  h1(pwB+1, A, B,
sid)). Based on the difficult of the CDHP, the
adversary cannot calculate the session key K = h2(A,

B, sid, 1xyzg) in all the sessions even if the passwords

are guessed correctly. The property of the forward
secrecy is provided.
(b) Even if one of the used session key K = h2(A, B,

sid, 1xyzg) is compromised by the adversary, the

adversary cannot obtain any useful information on
the corresponding messages. For instance, the
adversary may guess the password to get gx' and

'1yzg . Based on the difficult of the CDHP, the

adversary cannot verify the guessed password. As the
above mentioned, without the knowledge of the
password, the adversary cannot launch any attacks.
Hence, the backward secrecy is also kept in our
protocol.
Theorem 1. We claim that the proposed
password-based three-party key exchange protocol is
secure in the random oracle model if the CDHP is
hard.
Proof. We then give the detailed proof in the
appendix.

5. Efficiency Analysis

In this section, we analyze the computation cost
of a service requester because the requester could use
personal mobile devices to obtain the desirable
services. Also, as introduced in[24], we can learn a
relationship as follows: the time of one modular
exponentiation is faster 5/3 times than the time of
one public-key en/decryption operation, the time of
one modular multiplication computation is faster 240
times than the time of one modular exponentiation
operation, and the time of one one-way hash function
operation is faster 600 times than the time of one
modular exponentiation.

In Round 1, A calculates RA = gx  h1(pwA, A, B,
sid). The cost is one modular exponentiation plus one
hash function operation. In Round 4, A recovers b =
ZA1  h_1(pwA+1, A, B, sid) and c = ZA2  h1(pwA+2,
A, B, sid). The cost is two hash function operations.
Then A calculates the session key K = h2(A, B, sid,
bx), SA1 = h1(A, B, sid, K+1) and SA2 = h1(A, B, sid, cx,
a). The cost is two modular exponentiation plus 4
hash function operations. By the above, the
computation cost of A is 3 modular exponentiations
plus 6 hash function operations.

In the communication cost, we denote that:
1. Message Step denotes that one entity has sent

data to the communicated party.
2. Communication Round means that if the sent

data are independent between each message steps,
one or more message steps can be integrated into the
same communication round due to the sent data can
be performed in parallel. The burden of the
communication cost can be reduced.

We summarize the results in Table 1 and we can
see that our protocol is more efficient than the related
protocols[10-11,16,20-21].

5. Conclusions

In this paper, we have proposed a provably
secure password-based three-party key exchange
protocol to overcome some well known security

Life Science Journal, 2011; 8(4); http://www.lifesciencesite.com

 399

threats. Compared with the related protocols, the
computation efficiency is still kept in our proposed

protocol.

Table 1. Comparisons of the Computation Cost At Requester Side and the Communication Cost
 Our Lu-Cao[21]*3 Huang[16]*4 Chien-Wu[11] Chen et al.[10]* Lo-Yeh[20]
TEXP 3 4 2 2 3 3
TMUL 0 2 0 0 0 0
TH 7 3 4 4 4*1 4*1
TPKC 0 0 0 1 1*2 1*2
TSYM 0 0 0 0 1 1
Total(TMUL) 722.8 963.2 481.6 881.6 1121.6+1TSYM 1121.6+1TSYM
Rounds/Steps 4/8 5/5 5/5 4/4 5/5 4/6
TEXP denotes the time of one modular exponentiation operation; TMUL denotes the time of one modular multiplication computation; TH denotes the
time of one hash function operation; TPKC denotes the time of one public-key en/decryption operation; TSYM denotes the time of one
symmetric-key en/decryption operation;
*: the protocol has been proven that the on-line undetectable guessing attack still exists[20].
*1: the computation cost of pseudo-random hash function is similar to the cost of one-way trapdoor hash function.
*2: the computation cost of one-way trapdoor function is similar to the cost of public key en/decryption.
*3: The protocol which is not secure against the unknown key sharing, the on-line undetectable guessing, and the impersonation attacks has been
proven by[12,15,18,23].
*4: Wu had have shown that the protocol is not secure against the on-line undetectable guessing attack[25].

Correspondence:
Ren-Chiun Wang
E-mail: rcwang@icst.org.tw

References
1. M. Abdalla, E. Bresson, O. Chevassut, B. MÖoller,
D. Pointcheval, Strong Password-Based Authentication
in TLS using the Three-Party Group Diffie-Hellman
Protocol, International Journal of Security and
Networks. 2007, 2(3/4):284-296.
2. M. Abdalla, D. Catalano, C. Chevalier, D.
Pointcheval, Efficient Two-Party Password-Based Key
Exchange Protocols in the UC Framework, in: Topics
in Cryptology - CT-RSA 2008, LNCS 4964, 2008,
335-351.
3. M. Abdalla, P.-A. Fouque, D. Pointcheval,
Password-Based Authenticated Key Exchange in the
Three-Party Setting, in: Public Key Cryptography -
PKC 2005, LNCS 3386, 2005, 65-84.
4. M. Abdalla, P.-A. Fouque, D. Pointcheval,
Password-Based Authenticated Key Exchange in the
Three-Party Setting, IEE Proceedings, 2006, 153
(1):27-39.
5. M. Abdalla, D. Pointcheval, A Scalable
Password-based Group Key Exchange Protocol in the
Standard Model, in: Advances in Cryptology -
ASIACRYPT 2006, LNCS 4284, 2006, 332-347.
6. J. Baek, K. Kim, Remarks on the unknown
key-share attacks, IEICE Trans. on Fundamentals,
2000, E83-A(12):2766-2769.
7. M. Bellare, P. Rogaway, Provably secure session
key distribution the three party case, in: Proc. of the
27th ACM Annual Symposium on the Theory of
Computing, 1995, 57-66.
8. S. Blake-Wilson, A. Menezes, Unknown key-share
attacks on the stationto-station (STS) protocol, in:

Public Key Cryptography (PKC '99) Proceedings,
LNCS 1560, 1999, 154-170.
9. S. Boneh, B. Lynn, H. Shacham, Short Signatures
from theWeil Pairing, in: Advances in Cryptology -
ASIACRYPT 2001, LNCS 2284, 2001, 514-532.
10. H.-B. Chen, T.-H. Chen, W.-B. Lee, C.-C. Chang,
Security enhancement for a three-party encrypted key
exchange protocol against undetectable on-line
password guessing attacks, Computer Standards &
Interfaces, 2008, 30(1-2):95-99.
11. H.-Y. Chien, T.-C. Wu, Provably secure
password-based three-party key exchange with optimal
message steps, The Computer Journal, 2009,
52(6):646-655.
12. H.-R. Chung, W.-C. Ku, Three weaknesses in a
simple three-party key exchange protocol, Information
Sciences, 2008, 178(1):220-229.
13. W. Diffiee, M. Hellman, New directions in
cryptology, IEEE Transations on Information Theory,
1976, IT-22(6):644-654.
14. Y. Ding, P. Horster, Undetected on-line password
guessing attacks, ACM Operating Systems Review,
1995, 29(4):77-86.
15. H. Guo, Z. Li, Y. Mu, X. Zhang, Cryptanalysis of
simple three-party key exchange protocol, Computers
& Security, 2008, 27(1-2):16-21.
16. H.-F. Huang, A simple three-party password-based
key exchange protocol, International Journal of
Communication Systems, 2009, 22(7):857-862.
17. W.-S. Juang, Efficient three-party key exchange
using smart cards, IEEE Trans. on Consumer
Electronics, 2004, 50(2):619-624.
18. H.-S. Kim, J.-Y. Choi, Enhanced password-based
simple three-party key exchange protocol, Computers
& Electrical Engineering, 2009, 35(1):107{114.
19. T.-F. Lee, J.-L. Liu, M.-J. Sung, S.-B. Yang, C.-M.

Life Science Journal, 2011; 8(4); http://www.lifesciencesite.com

 400

Chen, Communication-efficient three-party protocols
for authentication and key agreement, Computers &
Mathematics with Applications, 2009, 58(4):641-648.
20. N.-W. Lo, K.-H. Yeh, Cryptanalysis of two
three-party encrypted key exchange protocols,
Computer Standards & Interfaces, 2009.
31(6):1167-1174.
21. R. Lu, Z. Cao, Simple three-party key exchange
protocol, Computers & Security, 2007, 26(1):94-97.
22. D. P. M. Bellare, P. Rogaway, Authenticated and
key exchange secure against dictionary attacks,
Advances in Cryptology - EUROCRYPT 2000, LNCS
1807, 2000, 139-155.
23. R. C.-W. Phan, W.-C. Yau, B.-M. Goi,
Cryptanalysis of simple threeparty key exchange
protocol (S-3PAKE), Information Sciences, 2008,
178(13):2849-2856.
24. B. Schneier, Applied cryptography, 2nd edition,
John Wiley & Sons Inc., 1996.
25. S. Wu, Weakness of a three-party password-based
authenticated key exchange protocol, Report 2009/535,
CryptEAr (Nov. 2009). URL
http://eprint.iacr.org/2009/535.pdf
26. E.-J. Yoon, K.-Y. Yoo, Improving the novel
three-party encrypted key exchange protocol,
Computer Standards & Interfaces, 2008,
30(5):309-314.

Appendix
A. Security Proof

We prove that our protocol provides the session
key indistinguishability property in the random oracle
model under the CDHP assumption.
Proof. We use a contradiction way to prove it. We
assume that an adversary AD can gain a non-negligible
advantage to distinguish the test key in the game and
AD can construct a breaker AD'' to solve the CDHP
problem, where the advantage of AD from
differentiating the real session key from a random key
as follows:
AdvP,D

G,AD(k,qfake-C) = | Pr[b'-b]-qfake-C/N–1/2*(N-qfake-C)
|.

We suppose that an oracle CA has accepted the

session key of the form K = h2(A, B, sid, 1xyzg) with

another fresh and partnership oracle CB. We say that
AD is successful if AD picks an oracle CA or CB to ask
a Test query and can output the bit guess correctly.
Thus, we have Pr[AD succeeds] = qfake-C/N + 1/2 * (N -
qfake-C)/N + (k), where (k) is non-negligible.
Let Qh be the event that h1() or h2() has been queried on

(A, B, sid, 1xyzg) by AD or some oracles. Then Pr[AD

succeeds] = qfake-C/N + Pr[AD succeeds | Qh] * Pr[Qh] +

Pr[AD succeeds | hQ] * Pr[hQ]. Since h1() and h2()

are random oracles and CA and CB are fresh oracles, it

implies Pr[AD succeeds | hQ] = 1/2. Hence, qfake-C/N

+ 1/2 * (N - qfake-C)/N + (k)  qfake-C/N + 1/2 * (N -
qfake-C)/N + Pr[Qh]. We then have Pr[Qh]  (k).

The adversary AD selects a fresh oracle CA which
has accepted a session key. Then the probability of h2()

being queried on (A, B, sid, 1xyzg) by AD or some

oracles other than CA and CB is non-negligible. As
mentioned before, we have assumed that AD constructs
a breaker AD'' which can solve the CDHP with
non-negligible probability. The task of AD'' is that:
Given X = gx and Y = gy, AD'' outputs gxy, where x and y
are chosen randomly.

AD'' executes the following process:
1. Randomly select CA and CB from Ĉ = {C1, C2, ...,

CNC} and instances u and i from {1, 2, ..., NI}, where
NC and NI denote the number of service requesters and
service providers and the instances per entity. Note that
all these parameters are polynomial on the security
parameter.

2. Determine two oracles CA
u and CB

v who are
partnership.

3. Guess that AD will choose one of CA
u and CB

v who
have accepted the session to ask its Test query after AD
decides to terminate the game.

Given the challenge (X* = gx, Y* = gy) to AD'', AD''
sets the public parameters as (g, p). AD'' also maintains
the lists Lh1 and Lh2 for the random oracles h1() and h2()
queries, LSend for the communicated transcripts, and
LKey for the corresponding keys of each session. AD''
selects the passwords pw for each CA and CB  {C1,
C2, ..., CNC} at random and lets pwĈ be the password
file of TS.

During the game, AD will ask some queries to
AD''. The answers are given as follows:

1. Hash query: AD'' randomly responses h1() and h2()
queries which are like real random oracles do, and
records all the inputs and the corresponding outputs in
Lh1 and Lh2, respectively.

2. Corrupt(C) query: If C is one of CA and CB, AD''
gives up; otherwise, AD'' answers all the internal state
of C to AD.

3. SendClient(CX
i, m) query:

(a) If (CX = CA) && (i = u) && (m = start), then AD''
sets NX = X* and responds the protocol says {CA, sid,

NX  h1(
ACpw , CA, CB, sid)}. Finally, the oracle

records the responsive transcript and the random

exponent (?) in the LSend list and (h1(
ACpw , CA, CB,

sid), (
ACpw , CA, CB, sid)) in the Lh1 list, where ?

denotes the corresponding exponent of X* and is
unknown.
(b) If (CX = CB) && (i = v) && (m has the form of (CA,

sid, NX  h1(
ACpw , CA, CB, sid)), then AD'' sets NY =

Life Science Journal, 2011; 8(4); http://www.lifesciencesite.com

 401

Y* and responds the protocol says {CA, CB, sid, NX 

h1(
ACpw , CA, CB, sid), NY  h1(

BCpw ,CA, CB, sid)}.

Finally, AD'' records the responsive transcript and the

random exponents (?) in the LSend list and (h1(
BCpw ,CA,

CB, sid), (
BCpw ,CA, CB, sid)) in the Lh1 list, where ?

denotes the corresponding exponent of Y* and is
unknown.
(c) If (CX  {C1, C2, ..., CNC}) && (m has the form of
("start", CY  {C1, C2, ..., CNC} && CY  CX)), then
AD'' selects an integer x' at random, calculates X* = gx',
and responds with the transcript {CX, sid, X* 

h1(
XCpw , CX, CY, sid)}. Finally, AD'' records the

transcript and the randomly secret exponent x' in its
LSend and Lh1 lists.
(d) If (CX  {C1, C2, ..., CNC}) && (m has the form of

(CY, sid, Y*  h1(
YCpw , CY, CX, sid)), then AD'' selects

an integer x' at random, calculates X* = gx', and
responds with the transcript {CY, CX, sid, Y* 

h1(
YCpw , CY, CX, sid), X*  h1(

XCpw , CX, CY, sid)}.

Finally, AD'' records the transcript and the randomly
secret exponent x' in its LSend list.
(e) If (CX = CA  {C1, C2, ..., CNC}) && (m has the

form of (CX, sid, 1XCZ , 2XCZ) for CY = CB  {C1,

C2, ..., CNC}), then AD'' consults its LSend list by using
sid to find a matched entry. If the matched entry can be
found, AD'' extracts the local value from LSend to

recover the received data and to calculate K, 1XCS

and 2XCS . AD'' responds with the transcript {CX, sid,

1XCS , 2XCS }. Finally, AD'' records corresponding

data in its LSend, Lh1, Lh2 and LKey lists respectively.
Otherwise, AD'' responses with error messages.
(f) If (CX  {C1, C2, ..., CNC}) && (m has the form of

(CX, sid, 1XCS)), then AD'' consults its LSend list by

using sid to find a matched entry. If the matched entry
can be found, AD'' extracts the local values from Lh1,

Lh2 and LKey lists and uses them to verify 1XCS . If the

verification does not hold, AD'' gives up; AD'' records
corresponding data in its LSend list.
(g) AD'' responses with error messages for all the other
cases.
4. SendServer(m) query:
(a) If (CX and CY  {C1, C2, ..., CNC}) && (m has the

form of ("start", CX, CY, sid, X*  h1(
XCpw , CX, CY,

sid), Y*  h1(
YCpw , CY, CX, sid))), then AD'' uses

XCpw and
YCpw to recover the received data. AD''

selects three integers z1, z2 and z3 at random and

responds with the transcript {CX, sid, 1XCZ , 2XCZ }

and {CY, sid, 1YCZ , 2YCZ }. Finally, AD records all

the transcripts and the randomly secret exponents z1, z2
and z3 in its LSend list, Lh1 list and LKey list respectively.
(b) If (CX  {C1, C2, ..., CNC}) && (m has the form of

(CX, sid, 2XCS for CY)  {C1, C2, ..., CNC}), then AD''

consults its LSend list by using sid to find a matched
entry. If the matched entry can be found, AD'' extracts
the local values from Lh1, Lh2 and LKey lists and uses

them to verify 2XCS . If the verification does not hold,

AD'' responds an error message to CY and records
corresponding data in its LSend list.
(c) AD'' responses with error messages for all the other
cases.

Reveal(CX
i) query: After receiving the query, AD''

consults the records in the list of LKey and reveals all the
internal state and the session keys.

AD then answers its guess and requires AD'' to
searches its Lh1 and Lh2 list for the entry, where the
entry has the input of the form (CX, CY, sid, (recovered
data)secretexponent) for some K. Finally, AD'' outputs K as
the Diffie-Hellman key of CX and CY. There are the two
possible results for the above experiment:

1. AD'' gives up if AD does not make its queries
where CA

u or CB
v has accepted their session.

2. If AD does make its queries, then CA
u or CB

v will
accept their session and hold the key formed h2(CA, CB,
sid, (recovered data)secretexponent). It is the fact that the

session key 1xyzg is unknown to AD'', AD'' cannot

calculate this key actually.
AD'' will search its Lh1 and Lh2 lists for the entry

and certainly wins its experiment if Case 2 does happen
really. Hence, the probability of AD'' outputting the

correct value on 1xyzg mod p is: Pr[Qh]/(NC
2NI

2)} 

(k) /(NC
2NI

2), where the probability is non-negligible
and the result contradicts our CDHP assumption.
Hence, we can conclude that (k) must be negligible
and is the advantage of AdvP,D

G,AD(k, qfake-C). The
theorem is proven.

11/12/2011

