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Abstract: Going along with the rapid development of web technologies, people can make a great quantity of service 
requests to service providers using mobile devices anytime and anywhere. However, the service requester and the 
service providers may not trust each other and they may locate at different domain. They require a communal trusted 
third party to help them establish a shared session key for secure communications. It is so-called three-party key 
exchange. Recently, many password-based three-party key exchange protocols were proposed against various 
well-known security threats. In those protocols, to prevent the password guessing attack, a widely used way is to 
employ public-key and/or symmetric-key cryptosystems to protect the exchanged messages. As we known, the 
encrypted and decrypted operations in a public-key cryptosystem are time-consuming. In this paper, we propose a 
password-based three-party key exchange protocol with the computation-efficiency without using public-key 
systems. Finally, we prove the security of the proposed protocol in the random oracle model.  
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1. Introduction 

Today, people have many opportunities to obtain 
services or resources from application servers by 
using their mobile devices through the Internet. 
However, both of the clients and the servers may be 
distributed over different network domains and do 
not win the trust each other. A secure mechanism has 
to make sure that the identity of the clients and the 
server can be authenticated each other and the 
communications are secure against an unauthorized 
user from eavesdropping the delivery contents[1-2,5]. 
The client and the application server require a 
communal trusted third party[3-4,17].  

Password is widely employed to construct a 
secure key exchange protocol since password-based 
protocols are easily to be developed and to be 
maintained. However, users have to worry about 
whether their passwords (have low entropies) have 
been guessed or not. The password guessing attacks 
can be divided into three kinds[11-12]: 
 
1. On-line detectable guessing attack. Attacker 
can enumerate all the candidature passwords and 
pick up one from the list. Then the attacker sends the 
chosen password to connect the server and verifies 
the server's response in on-line. Most 
password-based protocols can prevent this attack by 

the server limits the fail times. 
2. On-line undetectable guessing attack. Attacker 
can enumerate all the candidature passwords and 
pick up one from the list. Then the attacker sends the 
chosen password to connect the server and verifies 
the server's response in on-line. Since the server 
cannot discriminate whether the request is malicious 
or honest, therefore the server always replies a honest 
response. The attacker can catch this chance to guess 
the password until the password is correctly 
obtained[23]. 

3. Off-line guessing attack. Since the 
communicated channel is open, any eavesdropper 
can collect all the communications. Then the attacker 
can enumerate all the candidature passwords to 
launch the attack off-line until a hit is obtained 
without the help of the server. 

Many password-based three-party key exchange 
protocols were proposed and addressed to overcome 
the above guessing attacks by using the concept of 
public-key and symmetric-key techniques[10-11,19-20,26]. 
For enhancing the efficiency dramatically, in 2007, 
Lu and Cao proposed a simple three-party key 
exchange protocol[21] without using the server's 
public key. Unfortunately, Lu-Cao's key exchange 
protocol suffered from the unknown key sharing1, the 
on-line undetectable guessing, and the impersonation 
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attacks[12,15,18,23]. For guaranteeing the quality of 
communication services, low communication and 
computation cost is required in a three-party key 
exchange protocol. In 2009, Huang[16] proposed an 
efficiency-enhanced password-based three-party key 
exchange protocol. Huang claimed that the proposed 
protocol is also more efficient than Lu-Cao's protocol 
and can be applied in practice. However, Huang's 
protocol is still not secure against the on-line 
undetectable guessing attack[25]. 

We propose a provably secure password-based 
three-party key exchange protocol to withstand 
various well-known security threats by using the 
random oracle model[3,11,22]. Compared with the 
related protocols [10-11,20], our proposed protocol is 
computation-efficient. 

In the next section, we first give a notation of 
security. In Section 3, we propose a novel three-party 
key exchange protocol. In Section 4, we analyze the 
security of the proposed protocol. In Section 5, we 
analyze the efficiency among our proposed protocol 
and the related protocols.  
1 An unknown key-sharing attack on a key Finally, 
we conclude this paper in Section 6.exchange 
protocol which provides the key confirmation 
property is an attack whereby an entity A believes 
that she shares a session key with the communicated 
entity B. Unfortunately, it is fact that if the entity B 
mistakenly believes that the session key is instead 
shared with another entity E, where E  A. A secure 
key exchange protocol should be against this 
threat[6,8]. 
 
2. Notations of Security 

We first define some hard mathematical 
problems and security of a password-based 
three-party protocol. 
 
2.1 Hard Problems 
1. Definition 1. Discrete Logarithm Problem 
(DLP). Given two elements g and ga, it is 
computationally infeasible to find a, where p is a 
large prime number, g is a generator with order q in 
GF(p) and a  Zq

*. 
2. Definition 2. Computational Diffie-Hellman 
Problem (CDHP). Given three elements g, ga, and 
gb, it is computationally infeasible to calculate gab, 
where p is a large prime number, g is a generator 
with order q in GF(p) and both of a and b  Zq

*. 
3. Definition 3. Decisional Diffie-Hellman 
Problem (DDHP). Given four elements g, ga, gb, and 
gc, it is difficult to decide whether c mod q is equal 
ab mod q, where p is a large prime number, g is a 
generator with order q in GF(p) and all of a, b and c 
 Zq

*. 
 

2.2 Security Definitions 
The concrete security of a three party-based 

protocol is built up both the property of the session 
key indistinguishability and the protection of the 
password[7,22]. In a password-based protocol, an 
on-line detectable guessing attack[14] is inherent and 
is inevitable. However, this attack can be prevented 
by locking the account after some reasonable failed 
attempts in most password-based protocols. A more 
dangerous attack is the off-line guessing attack after 
an adversary copies a transcript of executions in a 
password-based protocol. The mission of a 
password-based protocol is to rule out the off-line 
guessing attack and to limit the adversary only to the 
on-line detectable guessing attack. For thwarting the 
online detectable guessing attack, the service 
requesters' requests are required to be authenticated 
for the operations of the trusted server from 
distinguishing malicious attempts from real requests. 
Also, for deterring the on-line undetectable and the 
off-line guessing attacks, the proposed protocol has 
to live up to the requirement of attackers that they 
may pick up the correct password but cannot verify 
their guessing from the eavesdropped messages. 

We denote the proposed protocol, a service 
requester CA and a service provider CB  Ĉ = {C1, ..., 
CNC} and a trusted server S. Each service requester 
CA and a service provider CB  Ĉ hold memorial 
passwords pwA and pwB, and the server S maintains a 
password table <P1, ...., PNC>. We also assume that an 
adversary AD who controls all the communications 
that take place by CA

i, CB
j and S is a probabilistic 

machine, where we denote that CA
i is the ith instance 

of the service requester CA and CB
j is the jth instance 

of the service provider CB. AD can interact with all 
the participants (CA, CB, S) through the following 
oracle queries. 

1. Execute(CA
i, CB

j), Execute(CA
i, S), Execute(CB

j, 
S): We use this query to model passive attacks where 
an attacker can eavesdrop all the communications 
between the instances (CA

i, CB
j) and between the 

instances (CA
i, S), and (CB

j, S) respectively. 
2. SendClient(CA

i, m): We use this query to model 
an active attack against that the attacker sends a 
message m to a participant CA at the ith instance. 
Then query outputs the result of CA from receiving 
the message m to generate. 

3. SendServer(m): We use this query to model an 
active attack against that the attacker sends a 
message m to the server S. Then query outputs the 
result of S from receiving the message m to generate. 

4. Reveal(CA
i): We use this query to model an 

active attack against the known-key attack at the ith 
instance CA. The query says that if the instance does 
not accept the session key, the output is ; otherwise, 
the output is the real session key. 
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5. Corrupt(CA): We use this query to allow that an 
attacker AD can corrupt the complete internal state of 
an entity CA. 
6. Test(CA

i): If an attacker AD queries this oracle 
and no session key for CA

i  Ĉ is accepted, this 
oracle outputs ; otherwise, the oracle flips a coin b. 
If b = 1, returns the real session key; if b = 0; returns 
a random key which has the same key with the real 
session key. 

The security definition of the proposed protocol 
depends on the partnership and freshness of oracles, 
where the partnership of the oracles is defined using 
the session identifiers sids and the partnership is 
defined to restrict the adversary's Reveal and Corrupt 
queries. If the partnership is not accepted by the 
oracles, the adversary is trying to guess the session 
key. 
1. Partnership: We say that two oracles CA

i and CB
j 

are partners, if and only if both of the oracles have 
accepted the same session key with the same session 
identifier and they have agreed on the same set of 
exchanging messages. Besides CA

i and CB
j, no other 

oracles have accepted with the same session 
identifier. 
2. Freshness: We say that two oracles CA

i and CB
j 

are fresh if and only if the oracle CA
i has accepted 

another partner oracle CB
j, the oracle CB

j has 
accepted another partner oracle CA

i, and all the 
oracles CA

i and CB
j have not been sent a Reveal query 

a Corrupt query. 
3. Session key security: We use the standard 
semantic security notation to model this property[22]. 
The security of session key is defined that the 
adversary who wants to discriminate a real key from 
a random one in the game G is indistinguishable, 
where the game played between the adversary AD 
and a collections of Ux

i oracles. The players Ux  Ĉ 
and S and instances i  {1, ..., NI}. AD runs the game 
G with the following stages. 
 Stage 1: AD is allowed to send the 
queries (Execute, SendClient, SendServer, Reveal 
and Corrupt) in the game. 
 Stage 2: During the game G, at some 
point, AD can choose a fresh session and end a Test 
query to one of the fresh oracles CA

i and CB
j for the 

testing. Depending on the unbiased coin b, AD is 
given ether the actual session key K or a random one 
from the session key distribution. 
 Stage 3: AD can continue to send the 
queries to the oracles Execute, SendClient, 
SndServer, Reveal and Corrupt for its choice. 
However, AD is restricted to send the Reveal and 
Corrupt queries to the oracles for its test session. 
 Stage 4: Eventually, AD winds up the 
game simulation and decides to output its guess bit 
b'. 

The success of AD from breaking the protocol 
in the game depends on passwords which are drawn 
from a dictionary D and is measured in terms of the 
advantage of AD from distinguishing whether the 
received value is the real key or a random one. Let 
AdvP,D

G,AD(k, qfake-C) be the advantage of AD and the 
advantage function be be defined as follows. 
AdvP,D

G,AD(k,qfake-C)=|Pr[b'-b]-qfake-C/N–1/2*(N-qfake-C)
| (1) 
where k is a security parameter, N denotes the size of 
the dictionary D and qfake-C denotes the number of 
attempts of the adversary from faking the client. 
After qfake-C times of faking the client, the intuition of 
the formulation is that the advantage of the adversary 
from finding the correct password and from faking 
the session key successfully should have the 
probability at most qfake-C/N. The rest of 
non-successful faking cases could have the 
successful probability 1/2.  

Password protection: An adversary may try to 
guess the password of a valid client and verify its 
guess through the interaction with the server or the 
client or from the intercepted messages. We require 
that the protocol has to provide the explicit 
authentication of a client's request for thwarting the 
online detectable guessing attack in which the server 
can do some actions such that the limitation of 
invalid request attempts cannot exceed the 
pre-defined threshold. Security against the adversary 
from launching the off-line guessing and the online 
undetectable guessing attacks, the protocol should 
not provide any advantageous information to 
outsiders or to a curious partner to verify its guess. 

 
Definition 4. We say that a password-based 

three-party key exchange protocol is secure in our 
model when the following requirements are satisfied: 

1. Validity: Among three oracles (CA
i, CB

j, S), the 
oracles (CA

i, CB
j) accept the same session key in the 

absence of an active adversary. 
2. Session key indistinguishability: For all 

probabilistic, the advantage of the adversary AD is 
negligible within a polynomial time. 

3. Explicit authentication: As the above mentioned, 
the protocol should make sure that the explicit 
authentication of two communicated parties is done 
for being against the online detectable guessing 
attacks. 

4. Password protection: As the above mentioned, 
the protocol should not provide any advantageous 
information to outsiders or to a curious partner to 
verify its guess for being against the off-line guessing 
and the undetectable online guessing attacks. 

 
3. Our Proposed Protocol 

In our protocol, we define h1() and h2() are 
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secure cryptographic one-way hash functions and we 
will model the functions as random oracles in the 
security proof. The other parameters are introduced 
as follows:  
A. The system selects a large prime number p, 
where (p - 1) has a prime factor q.  
B. Let g be a generator with order q in GF(p).  
C. TS denotes the trusted third party.  
D. A and B denote two communicated parties. 
E. pwA and pwB denote the passwords that A 
shared with TS and B shared with TS, respectively. 
F.  denotes an exclusive OR operation.  
G. For simplicity, all the exponentiation 
operations are under the modular p such as gx mod p 
 gx. 
1. Request that initiator A selects a random number 
x, calculates RA = gx  h1(pwA, A, B, sid), and sends 
(A, sid, RA) to the responder B, where the sid denotes 
the session identity. 
2. Upon receiving the request, B also selects a 
random number y, calculates RB = gy  h1(pwB, A, B, 
sid), and sends (B, RB) with A's request to the trusted 
server TS. 
3. (a) Upon receiving (A, B, sid, RA, RB), TS 
employs the passwords pwA and pwB to extract the 
exchanged information gx and gy, respectively. Then 
T selects three random numbers (z1, z2, z3) and 

calculates (a, b, c, d), where a= 1xzg , b= 1yzg , 

c= 2zg , and d = 3zg . 

(b) TS sends (A, sid, ZA1, ZA2) and (B, sid, ZB1, ZB2) to 
A and B in parallel, where ZA1 = b  h1(pwA+1, A, B, 
sid), ZA2 = c  h1(pwA+2, A, B, sid), ZB1 = a  
h1(pwB+1, A, B, sid), and ZB2 = d  h1(pwB+2, A, B, 
sid). 
4. Do in parallel 
(a) Upon receiving (B, sid, ZB1, ZB2), B employs 
h1(pwB+1, A, B, sid) and h1(pwB+2, A, B, sid) to 
recover a and d. B then calculates the session key K 
= h2(A, B, sid, ay), SB1 = h1(A, B, sid, K) and SB2 = 
h1(A, B, sid, dy, a). B sends SB1 to A and SB2 to TS for 
identifying the validation of its identity and the 
session key. 
(b) Upon receiving (A, sid, ZA1, ZA2), A employs 
h1(pwA+1, A, B, sid) and h1(pwA+2, A, B, sid) to 
recover b and c. A then calculates the session key K = 
h2(A, B, sid, bx), SA1 = h1(A, B, sid, K+1) and SA2 = 
h1(A, B, sid, cx, b). A sends SB1 to B and SA2 to TS for 
identifying the validation of its identity and the 
session key. 
5. Do in parallel 
(a) Both of A and B can authenticate each other by 
checking the validation of SB1 and SA1 and believe 
that the owned session key is fresh. 
(b) Upon receiving A and B's responses, TS can 

check the validation of SB2 and SA2. If any of the 
conditions does not hold, TS will return "connection 
failure" message to the corresponding parties and 
increase the fail times by one. We introduce the 
proposed protocol in Figure 1.  

Figure 1. The proposed protocol 
 

4. Security Analysis 
In this section, we analyze that the proposed 

protocol is secure against some well-known attacks. 
Before our analysis, we first assume that the 
following mathematical problems are hard to be 
solved[9,13]. 
4.1 Analysis 

1. Session Key Security. 

(a) Even if a = 1xzg  and b = 1yzg are known by an 

adversary, based on the difficulty of the CDHP, the 

adversary cannot derive the session key K = 1xyzg  

except the parties A and B. 
(b) Based on the properties of one-way hash function 
and the exclusive-OR operator, the adversary is 
useless to derive (gx, b, gy, a) without the knowledge 
of A and B's passwords. The reason is that the 
extracted values cannot be verified. The adversary 
wants to discriminate (gx, b, gy, a) from (RA, RB, ZA1, 
ZB1), the probability of obtaining the session key K is 
equivalent to solve the CDHP on (ZA1, SA1, ZB1, SB1). 

2. Replay Attack. An adversary who wants to 
imitate the requester A can resend the used messages 
(RA  = gx  h1(pwA, A, B, sid)) to B or to TS and 
expect to obtain some useful information from TS 

such as (ZA1 = 1yzg  h1(pwA+1, A, B, sid), ZA2 

= 2zg  h1(pwA+2, A, B, sid)). Based on the CDHP 

assumption, the adversary not only cannot derive 

new session key K = 1xyzg  without the knowledge of 

the ephemeral keys x, but also cannot win the trust of 
TS without the knowledge of the passwords pwA 

since 2zg is encrypted using the password pwA. 

3. Impersonation Attack. In Round 3 of our 
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proposed protocol, when someone sends the 
exchanged messages to TS, TS always returns the 
messages (ZA1, ZA2, ZB1, ZB2) back. The adversary can 
catch this chance to launch the attack. Note that TS 
waits the responses in Round 4. Since all the 
exchanged messages must be encrypted using the 
password independently, the adversary cannot know 
whether the guessed password is correct or not and 
also cannot judge whether the received message SB1 
and the computed results (SA1, SA2) are correct or not. 
Based on the difficult of the CDHP, this way is 
blocked. 
4. Password Guessing Attack. 
(a) On-line detectable guessing attack. In current 
systems, there is a standard mechanism to defeat this 
attack. The solution is that the remote server logs and 
counts the number of trial failures. If the number is 
larger than the pre-defined threshold values, the 
server stops the connection. This concept can be 
applied to our protocol since TS verifies whether A 
and B's responses (SA2, SB2) are correct or not in 
Round 4 and records the failure times. 
(b) On-line undetectable guessing attack. To launch 
the attack successfully, the attacker has to get some 
useful information in advance for manipulating the 
data and verifying their guess on TS's response (or 
B's response). The attack cannot work on our 
protocol since all the requests have to be sent to TS 
and TS will wait the feedbacks from both of A and B. 
It implies that any trial process will be detected by TS. 
The attack fails. 
(c) Off-line guessing attack. All the exchanged 
messages are encrypted using the passwords 
independently. The goal of the adversary is to guess 
the password and to verify the correctness on the 
intercepted messages. Based on the difficult of the 
CDHP, the adversary cannot employ the guessed 
password and derive messages to obtain any results 
on the messages (SA1, SA2, SB1, SB2) in Round 4. 
5. Forward/Backward Secrecy.  
(a) In each session, A, B and TS select their 
ephemeral keys (x, y, z1, z2) to construct (RA = gx  
h1(pwA, A, B, sid), RB = gy  h1(pwB, A, B, sid), zA1 = 
b  h1(pwA+1, A, B, sid), zB1 = a  h1(pwB+1, A, B, 
sid)). Based on the difficult of the CDHP, the 
adversary cannot calculate the session key K = h2(A, 

B, sid, 1xyzg ) in all the sessions even if the passwords 

are guessed correctly. The property of the forward 
secrecy is provided. 
(b) Even if one of the used session key K = h2(A, B, 

sid, 1xyzg ) is compromised by the adversary, the 

adversary cannot obtain any useful information on 
the corresponding messages. For instance, the 
adversary may guess the password to get gx' and 

'1yzg . Based on the difficult of the CDHP, the 

adversary cannot verify the guessed password. As the 
above mentioned, without the knowledge of the 
password, the adversary cannot launch any attacks. 
Hence, the backward secrecy is also kept in our 
protocol. 
Theorem 1. We claim that the proposed 
password-based three-party key exchange protocol is 
secure in the random oracle model if the CDHP is 
hard.  
Proof. We then give the detailed proof in the 
appendix. 
 
5. Efficiency Analysis 

In this section, we analyze the computation cost 
of a service requester because the requester could use 
personal mobile devices to obtain the desirable 
services. Also, as introduced in[24], we can learn a 
relationship as follows: the time of one modular 
exponentiation is faster 5/3 times than the time of 
one public-key en/decryption operation, the time of 
one modular multiplication computation is faster 240 
times than the time of one modular exponentiation 
operation, and the time of one one-way hash function 
operation is faster 600 times than the time of one 
modular exponentiation. 

In Round 1, A calculates RA = gx  h1(pwA, A, B, 
sid). The cost is one modular exponentiation plus one 
hash function operation. In Round 4, A recovers b = 
ZA1  h_1(pwA+1, A, B, sid) and c = ZA2  h1(pwA+2, 
A, B, sid). The cost is two hash function operations. 
Then A calculates the session key K = h2(A, B, sid, 
bx), SA1 = h1(A, B, sid, K+1) and SA2 = h1(A, B, sid, cx, 
a). The cost is two modular exponentiation plus 4 
hash function operations. By the above, the 
computation cost of A is 3 modular exponentiations 
plus 6 hash function operations. 

In the communication cost, we denote that: 
1. Message Step denotes that one entity has sent 

data to the communicated party. 
2. Communication Round means that if the sent 

data are independent between each message steps, 
one or more message steps can be integrated into the 
same communication round due to the sent data can 
be performed in parallel. The burden of the 
communication cost can be reduced. 

We summarize the results in Table 1 and we can 
see that our protocol is more efficient than the related 
protocols[10-11,16,20-21]. 
 
 
5. Conclusions 

In this paper, we have proposed a provably 
secure password-based three-party key exchange 
protocol to overcome some well known security 
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threats. Compared with the related protocols, the 
computation efficiency is still kept in our proposed 

protocol. 

 
Table 1. Comparisons of the Computation Cost At Requester Side and the Communication Cost 
 Our Lu-Cao[21]*3 Huang[16]*4 Chien-Wu[11] Chen et al.[10]* Lo-Yeh[20] 
TEXP 3 4 2 2 3 3 
TMUL 0 2 0 0 0 0 
TH 7 3 4 4 4*1 4*1 
TPKC 0 0 0 1 1*2 1*2 
TSYM 0 0 0 0 1 1 
Total(TMUL) 722.8 963.2 481.6 881.6 1121.6+1TSYM 1121.6+1TSYM 
Rounds/Steps 4/8 5/5 5/5 4/4 5/5 4/6 
TEXP denotes the time of one modular exponentiation operation; TMUL denotes the time of one modular multiplication computation; TH denotes the 
time of one hash function operation; TPKC denotes the time of one public-key en/decryption operation; TSYM denotes the time of one 
symmetric-key en/decryption operation;  
*: the protocol has been proven that the on-line undetectable guessing attack still exists[20].  
*1: the computation cost of pseudo-random hash function is similar to the cost of one-way trapdoor hash function.  
*2: the computation cost of one-way trapdoor function is similar to the cost of public key en/decryption.  
*3: The protocol which is not secure against the unknown key sharing, the on-line undetectable guessing, and the impersonation attacks has been 
proven by[12,15,18,23]. 
*4: Wu had have shown that the protocol is not secure against the on-line undetectable guessing attack[25]. 
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Appendix 
A. Security Proof 

We prove that our protocol provides the session 
key indistinguishability property in the random oracle 
model under the CDHP assumption. 
Proof. We use a contradiction way to prove it. We 
assume that an adversary AD can gain a non-negligible 
advantage to distinguish the test key in the game and 
AD can construct a breaker AD'' to solve the CDHP 
problem, where the advantage of AD from 
differentiating the real session key from a random key 
as follows: 
AdvP,D

G,AD(k,qfake-C) = | Pr[b'-b]-qfake-C/N–1/2*(N-qfake-C) 
|. 

We suppose that an oracle CA has accepted the 

session key of the form K = h2(A, B, sid, 1xyzg ) with 

another fresh and partnership oracle CB. We say that 
AD is successful if AD picks an oracle CA or CB to ask 
a Test query and can output the bit guess correctly. 
Thus, we have Pr[AD succeeds] = qfake-C/N + 1/2 * (N - 
qfake-C)/N + (k), where (k) is non-negligible. 
Let Qh be the event that h1() or h2() has been queried on 

(A, B, sid, 1xyzg ) by AD or some oracles. Then Pr[AD 

succeeds] = qfake-C/N + Pr[AD succeeds | Qh] * Pr[Qh] + 

Pr[AD succeeds | hQ ] * Pr[ hQ ]. Since h1() and h2() 

are random oracles and CA and CB are fresh oracles, it 

implies Pr[AD succeeds | hQ ] = 1/2. Hence, qfake-C/N 

+ 1/2 * (N - qfake-C)/N + (k)  qfake-C/N + 1/2 * (N - 
qfake-C)/N + Pr[Qh]. We then have Pr[Qh]  (k).  

The adversary AD selects a fresh oracle CA which 
has accepted a session key. Then the probability of h2() 

being queried on (A, B, sid, 1xyzg ) by AD or some 

oracles other than CA and CB is non-negligible. As 
mentioned before, we have assumed that AD constructs 
a breaker AD'' which can solve the CDHP with 
non-negligible probability. The task of AD'' is that: 
Given X = gx and Y = gy, AD'' outputs gxy, where x and y 
are chosen randomly. 

AD'' executes the following process: 
1. Randomly select CA and CB from Ĉ = {C1, C2, ..., 

CNC} and instances u and i from {1, 2, ..., NI}, where 
NC and NI denote the number of service requesters and 
service providers and the instances per entity. Note that 
all these parameters are polynomial on the security 
parameter. 

2. Determine two oracles CA
u and CB

v who are 
partnership. 

3. Guess that AD will choose one of CA
u and CB

v who 
have accepted the session to ask its Test query after AD 
decides to terminate the game. 

Given the challenge (X* = gx, Y* = gy) to AD'', AD'' 
sets the public parameters as (g, p). AD'' also maintains 
the lists Lh1 and Lh2 for the random oracles h1() and h2() 
queries, LSend for the communicated transcripts, and 
LKey for the corresponding keys of each session. AD'' 
selects the passwords pw for each CA and CB  {C1, 
C2, ..., CNC} at random and lets pwĈ be the password 
file of TS.  

During the game, AD will ask some queries to 
AD''. The answers are given as follows: 

1. Hash query: AD'' randomly responses h1() and h2() 
queries which are like real random oracles do, and 
records all the inputs and the corresponding outputs in 
Lh1 and Lh2, respectively. 

2. Corrupt(C) query: If C is one of CA and CB, AD'' 
gives up; otherwise, AD'' answers all the internal state 
of C to AD. 

3. SendClient(CX
i, m) query: 

(a) If (CX = CA) && (i = u) && (m = start), then AD'' 
sets NX = X* and responds the protocol says {CA, sid, 

NX  h1(
ACpw , CA, CB, sid)}. Finally, the oracle 

records the responsive transcript and the random 

exponent (?) in the LSend list and (h1(
ACpw , CA, CB, 

sid), (
ACpw , CA, CB, sid)) in the Lh1 list, where ? 

denotes the corresponding exponent of X* and is 
unknown. 
(b) If (CX = CB) && (i = v) && (m has the form of (CA, 

sid, NX  h1(
ACpw , CA, CB, sid)), then AD'' sets NY = 
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Y* and responds the protocol says {CA, CB, sid, NX  

h1(
ACpw , CA, CB, sid), NY  h1(

BCpw ,CA, CB, sid)}. 

Finally, AD'' records the responsive transcript and the 

random exponents (?) in the LSend list and (h1(
BCpw ,CA, 

CB, sid), (
BCpw ,CA, CB, sid)) in the Lh1 list, where ? 

denotes the corresponding exponent of Y* and is 
unknown. 
(c) If (CX  {C1, C2, ..., CNC}) && (m has the form of 
("start", CY  {C1, C2, ..., CNC} && CY  CX)), then 
AD'' selects an integer x' at random, calculates X* = gx', 
and responds with the transcript {CX, sid, X*  

h1(
XCpw , CX, CY, sid)}. Finally, AD'' records the 

transcript and the randomly secret exponent x' in its 
LSend and Lh1 lists. 
(d) If (CX  {C1, C2, ..., CNC}) && (m has the form of 

(CY, sid, Y*  h1(
YCpw , CY, CX, sid)), then AD'' selects 

an integer x' at random, calculates X* = gx', and 
responds with the transcript {CY, CX, sid, Y*  

h1(
YCpw , CY, CX, sid), X*  h1(

XCpw , CX, CY, sid)}. 

Finally, AD'' records the transcript and the randomly 
secret exponent x' in its LSend list. 
(e) If (CX = CA  {C1, C2, ..., CNC}) && (m has the 

form of (CX, sid, 1XCZ , 2XCZ ) for CY = CB  {C1, 

C2, ..., CNC}), then AD'' consults its LSend list by using 
sid to find a matched entry. If the matched entry can be 
found, AD'' extracts the local value from LSend to 

recover the received data and to calculate K, 1XCS  

and 2XCS . AD'' responds with the transcript {CX, sid, 

1XCS , 2XCS }. Finally, AD'' records corresponding 

data in its LSend, Lh1, Lh2 and LKey lists respectively. 
Otherwise, AD'' responses with error messages. 
(f) If (CX  {C1, C2, ..., CNC}) && (m has the form of 

(CX, sid, 1XCS )), then AD'' consults its LSend list by 

using sid to find a matched entry. If the matched entry 
can be found, AD'' extracts the local values from Lh1, 

Lh2 and LKey lists and uses them to verify 1XCS . If the 

verification does not hold, AD'' gives up; AD'' records 
corresponding data in its LSend list. 
(g) AD'' responses with error messages for all the other 
cases. 
4. SendServer(m) query: 
(a) If (CX and CY  {C1, C2, ..., CNC}) && (m has the 

form of ("start", CX, CY, sid, X*  h1(
XCpw , CX, CY, 

sid), Y*  h1(
YCpw , CY, CX, sid))), then AD'' uses 

XCpw  and 
YCpw  to recover the received data. AD'' 

selects three integers z1, z2 and z3 at random and 

responds with the transcript {CX, sid, 1XCZ , 2XCZ } 

and {CY, sid, 1YCZ , 2YCZ }. Finally, AD records all 

the transcripts and the randomly secret exponents z1, z2 
and z3 in its LSend list, Lh1 list and LKey list respectively. 
(b) If (CX  {C1, C2, ..., CNC}) && (m has the form of 

(CX, sid, 2XCS for CY)  {C1, C2, ..., CNC}), then AD'' 

consults its LSend list by using sid to find a matched 
entry. If the matched entry can be found, AD'' extracts 
the local values from Lh1, Lh2 and LKey  lists and uses 

them to verify 2XCS . If the verification does not hold, 

AD'' responds an error message to CY and records 
corresponding data in its LSend list. 
(c) AD'' responses with error messages for all the other 
cases. 

Reveal(CX
i) query: After receiving the query, AD'' 

consults the records in the list of LKey and reveals all the 
internal state and the session keys.  

AD then answers its guess and requires AD'' to 
searches its Lh1 and Lh2 list for the entry, where the 
entry has the input of the form (CX, CY, sid, (recovered 
data)secretexponent) for some K. Finally, AD'' outputs K as 
the Diffie-Hellman key of CX and CY. There are the two 
possible results for the above experiment: 

1. AD'' gives up if AD does not make its queries 
where CA

u or CB
v has accepted their session. 

2. If AD does make its queries, then CA
u or CB

v will 
accept their session and hold the key formed h2(CA, CB, 
sid, (recovered data)secretexponent). It is the fact that the 

session key 1xyzg is unknown to AD'', AD'' cannot 

calculate this key actually. 
AD'' will search its Lh1 and Lh2 lists for the entry 

and certainly wins its experiment if Case 2 does happen 
really. Hence, the probability of AD'' outputting the 

correct value on 1xyzg mod p is: Pr[Qh]/(NC
2NI

2)}  

(k) /(NC
2NI

2), where the probability is non-negligible 
and the result contradicts our CDHP assumption. 
Hence, we can conclude that (k) must be negligible 
and is the advantage of AdvP,D

G,AD(k, qfake-C). The 
theorem is proven. 
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