On Bipreordered Approximation Spaces

${ }^{1}$ A. Kandil, ${ }^{2}$ M. Yakout, and ${ }^{* 2}$ A. Zakaria
${ }^{1}$ Mathematics Department, Faculty of Science, Helwan University, Cairo-Egypt.
${ }^{2}$ Mathematics Department, Faculty of Education, Ain Shams University, Egypt.
*amr_zakaria2008@yahoo.com

Abstract

We used preordered relations to define a bipreordered space and hence bitopological space and introduced a condition $\left({ }^{*}\right)$ on these relations such that $\bar{R}(A \cup B)=\bar{R}(A) \cup \bar{R}(B)$, where $\bar{R}(A)=\bar{R}^{1}(A) \cap \bar{R}^{2}(A)$, and hence we get a topology $\tau_{R_{0 n}}$ on X satisfies $\bar{A}=\bar{R}(A)=\bar{R}^{1}(A) \cap \bar{R}^{2}(A)=\left\{x \in X: x R_{1} \cap x R_{2} \cap A \neq \phi\right\}=\bar{A}^{1} \cap \bar{A}^{2}$ and $\tau_{R_{12}}=\tau_{R_{1} \cap R_{2}}=\tau_{R_{2}} \vee \tau_{R_{2}}$. We deal with bitopological spaces $\left(X, \tau_{1}, \tau_{2}\right)$ which satisfying a certain condition $\left({ }^{* *}\right)$ and proved that the family of all such bitopological spaces BTS ${ }^{* *}$ is equivalent to the family of all bipreordered spaces BPS ${ }^{*}$. [A. Kandil, M. Yakout, and A. Zakaria. On Bipreordered Approximation Spaces. Life Science Journal. 2011; 8(3):505-509] (ISSN: 1097-8135). http://www.lifesciencesite.com.

Keywords: Bipreorder; Approximation; Space

1. Introduction

A classic paper of Z. pawlak [17] is the Rough Sets (RS), published in 1982, which declared the birth of the RS theory. A lot of mathematicians, logicians, and researchers of computers have become interested in the RS theory and have done a lot of research work of RS in theory $[6,14,15]$ and application. Its applications are showed in wide fields such as machine learning [5], data mining [4], decision- making support and analysis [16, 18, 23], process control [22] and expert system [26].

Different kinds of generalizations of pawlak RS model can be obtained by replacing the equivalence relation with an arbitrary binary relation [3, 19, 20, 25]. It was proved that, the pair of lower and upper approximation operators induced by reflexive and transitive relations is exactly a pair of interior and closure operators of a topology [27, 29]. Some surveys of RS theory and applications are presented in [21, 28]. Many properties of RS were obtained when the approximation space is finite. When the universe is infinite, the relationship between generalized RS induced by binary relation and topologies were investigated in [11] and [24]. In [11], a kind of compactness condition (comp) was proposed and it was proved that a topology which satisfies (comp) can determine the lower and upper approximation operators induced by reflexive and transitive relation. In [24], the topology induced by reflexive and transitive relation does not satisfy (comp) in general. Another kind of compactness condition (COMP) is proposed and it is proved that there exists a one-to-one correspondence between the set of all reflexive and transitive relations and the set of all topologies which satisfy condition (COMP).

The formation and progress of the theory of bitopological spaces introduced in [10]. The theory acquires special importance in the light of applications of its results. The theory of bitopological space has been developed in $[1,7,8$, 12].
the order relations used to define a topology or bitopologies on a set X were often equivalence relations (e.g.[2]). In this paper we used only preordered relations(i.e. reflexive and transitive) to define topologies, however, $A \cup B=A \cup B$ still does not hold, where $\bar{A}=\bar{A}^{1} \cap \bar{A}^{2}$, so, we introduced the condition $\left({ }^{*}\right)$ for preordered relations R_{1} and R_{2} making the preceding equality holds and hence we could generate a topology by two preordered relations, $\tau_{R_{12}}$ and proved that for all $A \subseteq X$, $\bar{A}=\bar{A}(A)=\bar{A}^{1}(A) \cap \bar{A}^{2}(A)=\left\{x \in X: X A_{1} \cap x R_{2} \cap A \neq \phi\right\}=\bar{A}^{1} \cap \bar{A}^{2}$ and many other properties are proved, especially, $\tau_{\pi_{12}}=\tau_{R_{1} \cap \pi_{2}}=\pi_{\pi_{1}} \vee \tau_{\pi_{2}}$ and many examples on finite and infinite universes are given. If a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is given, we introduced a condition (**) such that $C(A \cup B)=C(A) \cup C(B)$ becomes hold, and hence we obtained a topology $\tau_{12^{z}}=\left\{A \subseteq X A^{01} \cup A^{02}=A\right\}$ and proved that there exists a one-to-one correspondence between the family of all bitopological space satisfying the condition (**) which denoted by BTs* and the family of all bipreordered spaces satisfying (*) which denoted by BP5*.

2. Material and Methods
 2 Preliminaries
 2.1 Definition[3]

Let R be any relation on $X, x \in X$ and $A \subseteq X$. The afterset(foreset) of x is defined respectively, by $x A_{1}=\left\{y \subset X_{1} x R y\right\}, R x:=\left\{y \subset X_{1} y R x\right]$,
and the upper(lower) approximation of A is defined by
$\bar{R}(A):=\{x \in X: x R \cap A \neq \phi\}$
$\underline{R}(A)=\left(\bar{R}\left(A^{\prime}\right)\right)^{\prime}$

2.2 Theorem[24]

If R is reflexive, then the operator \bar{R} on $P(X)$, defined by (1), is \hat{C} ech closure operator and hence it generates a topology on X given by
$\tau_{A}=\{A \subseteq X B(A)=A\}$
Moreover, if R is a preorder relation on X, then $\overline{\bar{R}}$ satisfies kuratowski's axioms i.e. for all $A \subseteq X, \bar{R}(A)$ represents the closure of A w.r.t. the induced topology τ_{n} and τ_{R} satisfies the following condition

a yentury

Let (X, v) be a topological space (TS) and be its closure operator. We define a preorder relation on X by:

$$
\begin{equation*}
x R y \Leftrightarrow x \in \overline{\{y\}} \forall x, y \in X \tag{5}
\end{equation*}
$$

2.3 Theorem[24]

Let (X, v) be a TS, - be its closure operator and R be as defined in (5). If (N, τ) satisfies the condition (4), then:

1. $\bar{R}(A)=\bar{A} \forall A \equiv X$
2. $\tau_{R}=\tau$, where τ_{R} defined in (3)
3. $R_{: R}=R$

2.4 Lemma

If R_{1} and R_{z} are two preorder relations on a non empty set X, then
$x\left(R_{1} \cap R_{2}\right)=x R_{1} \cap x R_{2}$
Proof. Straightforward.

2.5 Theorem[9]

Let (X, v) be a TS. Then the following are equivalent:

1. (X, τ) satisfies the condition (4)
2. $\overline{U_{i \in i} A_{i}}=U_{i \in i} \bar{A}$
3. (X, τ) is an Alexandrov space.

2.6 Theorem[24]

There exists a one-to-one correspondence between the family of all preorder relations on X and the family of all topologies which satisfies (4).

3 Bipreordered Spaces

3.1 Definition

Let R_{1} and R_{2} be two preorder relations on a non empty set X. Then $\left(X, R_{1}, R_{2}\right)$ is called bipreordered space (BPS).

3.2 Lemma

Let $\left(X, R_{1}, R_{2}\right)$ be a BPS. Then pre-upper approximation operator $\bar{R}: P(X) \rightarrow P(X)$ given by: $\bar{R}(A)=\bar{A}^{1}(A) \cap \bar{R}^{2}(A)$
where $\bar{R}^{i}(A), j=1,2$ be defined in (1), satisfies the following properties:

1. $A \subseteq \bar{R}(A)$
2. $\bar{R}(A) \cup \bar{R}(B) \subseteq \bar{R}(A \cup B)$
3. $\bar{R}(A \cap B) \subseteq \bar{R}(A) \cap \bar{R}(B)$
4. $\bar{R}(\bar{R}(A))=\bar{R}(A)$
5. $\bar{R}(X)=X$
6. $\underline{R}(A)=\left(\bar{R}\left(A^{V}\right)^{r}\right.$

Proof. Straightforward
The following example shows that $\bar{R}(A) \cup \bar{R}(B) \neq \bar{R}(A \cup B)$.

3.3 Example

Let

$[(a, a)(a, c)\}, A=\{c]$
and $B=\{b\}$ Then $\bar{R}(A) \cup \bar{R}(B) \neq \bar{R}(A \cup B)$.

3.4 Definition

The BPS $\left(X, F_{1}, F_{2}\right)$ is called BP5 if it satisfies the following condition
(*): If $\left(R_{1} y \cap R_{2} z\right) \backslash\{, z\} \div \phi$, then $y R_{1} z$ or $z R_{2} y$.

3.5 Examples

Let X be a non empty set, $\alpha \in X$ and $A \subseteq X$. Then the following spaces $\left(X, R_{1}, R_{z}\right)$ are examples for BPS*

1. $R_{1}=\Delta \cup\{(x, a): x \in X\}$,
$R_{x}-\Delta \cup[(\alpha, y): y \in X]$
2. $R_{1}=\Delta \cup\{(x, y): y \in A\}$,
$R_{2}=\Delta \cup\left\{(x, y): x \in A^{\prime}\right\}$

3.6 Theorem

If $\left(X, R_{4}, R_{2}\right)$ is BPS*, then

1. $\bar{R}(A \cup B)=\bar{R}(A) \cup \bar{R}(B)$, where $\bar{R}(A)$ as defined in(1)
2. $\bar{R}(A)=\left\{x \in X: x R_{1} \cap x R_{2} \cap A \neq \phi\right\}$
3. If we define $\tau_{R_{t 2}}:=\{A \subseteq X: \underline{R}(A)=A\}$ then $\tau_{R_{12}}$ is a topology on X. Moreover,
$\bar{A}=\bar{A}(A)=C(A)=\bar{A}^{1} \cap \bar{A}^{2}$, where \bar{A}^{j} is the closure of A w.r.t. $\tau_{R j}, j=1.2$

Proof.

1. By Lemma (3.2). 2

$$
\begin{equation*}
\bar{R}(A) \cup \bar{R}(B) \subseteq \bar{R}(A \cup B) \tag{7}
\end{equation*}
$$

Let $x \in \bar{R}(A \cup B)$. Then $x \in \bar{R}^{1}(A \cup B)$ and $x \equiv \bar{R}^{2}(A \cup B) \quad$ i.e. $\quad x R_{1} \cap(A \cup B) \div \phi \quad$ and $x R_{2} \cap(A \cup B) \neq \varphi, \quad$ i.e. there exists $y=x R_{1} \cap(A \cup B)$ and $z \leq x R_{2} \cap(A \cup B)$.
We have the following cases:

- If $y, z \in A$ then $x R_{1} \cap A=\phi$ and $x R_{2} \cap A \neq \phi$ which implies that $x \in \bar{R}(A)$ and then $\bar{R}(A) \cup \bar{R}(B)=\bar{R}(A \cup B)$.
- Similarly if $y, z \in B$.
- If $y \in A, z \in B$ and $y \in x R_{1}, z \in x R_{2}$, hence by (*) $y R_{1} z$ or $z R_{2} y$. Since R_{1}, R_{2} are transitive we have $x R_{1} z$ or $x R_{2} y$, and hence $\left(x R_{1} \cap B \neq \phi, x R_{2} \cap B \neq \phi!\quad\right.$ or $\left(x R_{1} \cap A+\phi, x R_{2} \cap A+\phi\right)$. Hence $x \in \bar{R}(B)$ or $x \in \bar{R}(A)$, accordingly,

$$
\begin{equation*}
\bar{R}(A \cup B) \subseteq \bar{R}(A) \cup \bar{R}(B) \tag{8}
\end{equation*}
$$

From (6) and (7) we get $\bar{R}(A \cup B)=\bar{R}(A) \cup \bar{R}(B)$.

- Similarly if $y \in B, z \in A$.

2. Let $x \in \bar{R}(A)$. Then $x \bar{R}^{1}(A)$ and $x \in \bar{R}^{2}(A)$, i.e. $x R_{1} \cap A \neq \phi$ and $x R_{2} \cap A \neq \phi$, i.e. there exists $y \in x R_{1} \cap A$ and $z \in x R_{2} \cap A$, hence by (${ }^{*}$) $y R_{1} z$ or $z R_{2} y$. Since R_{1}, R_{z} are transitive we have $x R_{1} z$ or $x R_{1} y$ and hence $x R_{1} \cap x R_{2} \cap A \neq \phi$, i.e. $\bar{R}(A) \subseteq\left\{x \in X: x R_{1} \cap x R_{2} \cap A \neq \phi\right\}$.
$\left\{x \in X: x R_{1} \cap x R_{2} \cap A \neq \phi\right\} \subseteq \bar{R}(A)$ is trivial. 3 . Straightforward.

3.7 Theorem

Let $\left(X, R_{1}, R_{2}\right)$ be a BP 5^{*}. Then $\tau_{R_{12}}$ satisfies condition (4).

Proof. Let $x \in C(A)$. It follows that $x \in \bar{R}(A)$ and hence $x \bar{R}_{1} \cap x \bar{R}_{2} \cap A \neq \psi$, i.e. $x \in \bar{\Pi}[y]=C([y)$.

3.8 Theorem

Let $\left(X, R_{1}, R_{2}\right)$ be a BPS*. Then the family $\left[x R_{1} \cap x R_{2}: x \in X\right]$ is a basis for $\tau_{R_{12}}$.

Proof. Let $x \in G$ be an open subset of X. It follows that $x \in G=\underline{F}(G)$ and hence $x \in x R_{1} \cap x R_{2} \subseteq G$.

3.9 Lemma

Let $\left(X, R_{1}, R_{2}\right)$ be a BPS 5^{*}. Then

1. Since $x R_{1} \cap x R_{2}$ is the smallest possible neighborhood of x
2. A subset A of X is open if and only if $A=U_{x \in A}\left(x R_{1} \Gamma_{1} x R_{2}\right)$.

Proof.

1. Since R_{1} and R_{2} are reflexive relations. Then $x \in x R_{1} \cap x R_{2} \forall x \in X$, hence $x R_{1} \cap x R_{2}$ is a neighborhood of x.
Let A be any neighborhood of x. It follows that $x \in i(A)=\underline{R}(A)$,
hence $x R_{1} \cap x R_{2} \subseteq A$, i.e. $x R_{1} \cap x R_{2}$ is the smallest possible neighborhood of x.
2. By Theorem 3.8. the result follows immediately.

3.10 Theorem

If $\left(X, R_{1}, R_{2}\right)$ is BP S^{*}, then
$\tau_{R_{12}}=\tau_{R_{1} n R_{2}}$
Proof. For simplicity put $R_{1} \cap R_{2}=Q$. $A \in \tau_{Q} \Leftrightarrow \underline{Q}(A)=A \Rightarrow\{x: x \underline{Q} \subseteq A\}=A \Leftrightarrow$
$\left\{x: x R_{1} \cap \overline{x R_{2}} \subseteq A\right\}=A \Leftrightarrow \underline{R}(A)=A \Leftrightarrow A \in \tau_{R_{1}}$, , for all $A \subseteq X$. Then the result.

3.11 Theorem

If $\left(X, R_{1}, R_{2}\right)$ is BPS*, then
$\tau_{R_{12}}=\tau_{R_{1}} \vee \tau_{R_{2}}$
i.e. $\tau_{A_{12}}$ is the least upper bound topology containing $\tau_{{\tilde{W_{1}}}}, \tau_{\mu_{2}}$.
Proof. We want to show that $\tau_{R_{1}} \vee \tau_{R_{2}} \subseteq \tau_{R_{1}}$, and the other inclusion is clear.
Let $A \in \tau_{R_{1}} \vee \tau_{R_{2}}$. Then
$A=\bar{R}\left(\cap_{i /}\left(B_{i}^{r} \cup B_{j}^{r}\right)\right.$
$\left.\subseteq \cap_{i j} \bar{H}\left(B_{i}^{r} \cup B_{j}^{r}\right)\right)=\cap_{i,}\left(\bar{H}\left(B_{i}^{r}\right) \cup \bar{H}\left(B_{j}^{r}\right)\right), \quad$ by theorem 3.6(1)
$=\cap_{i, i}\left(B_{i}^{r} \cup B_{j}^{\prime}\right)$, by (1)
$=A^{\prime}$. Hence $\bar{R}\left(A^{\prime}\right)$, and then $A E \tau_{\mathrm{F}_{12}}$.

4 Special Kinds of Bitopological Spaces 4.1 Definition

The bitopological space (BTS) $\left(X, \tau_{1}, \tau_{2}\right)$ is called BTS** if it satisfies the following condition
(**): $\left.\left(\overline{(6]}^{1} \cap \overline{\{z]}^{2}\right) \mathrm{Q} y, z\right\}=\phi \Rightarrow y=\overline{\{z\}}^{1} \quad$ or $z \in \overline{\{y\}}^{2}$, where τ_{1} and τ_{z} satisfy the condition (4).
4.2 Example

Let X be a non empty set, $\alpha \in X$ and $A \subseteq X$ Then the following spaces $\left(X, \tau_{2}, \tau_{2}\right)$ are examples for BT5**
1.
$\tau(\alpha)=\{A \subseteq X: a \in A\} \cup\{\phi\}, \tau_{a}=\{A \subseteq$
$X: \alpha \in A\} \cup\{K\}$
2.
$\tau_{A}=\{B \subseteq X: A \subseteq B\} \cup\{\phi\}, \tau^{A}=\{B \subseteq X: B \subseteq$
A $\} \cup\{X\}$
The following example shows that the two topologies satisfy $\left({ }^{* *}\right)$ but one of them does not satisfy (4)

4.3 Example

Let X be an infinite set and $\alpha \in X$. The BTS $\left(X, \tau_{z s}, \tau_{\alpha}\right)$ where
$\tau_{\mathrm{s}}=\left\{A \subseteq X_{1} A^{r}\right.$ finite $\} \cup\{\phi]$,
$\tau_{a}=\{A \subseteq X: \propto \mathbb{E} A\} \cup[X]$. Then each of $\tau_{\sim s}, \tau_{a}$ satisfies $\left({ }^{* *}\right)$ and $\left(X, \tau_{m s}\right)$ does not satisfy (4).
The following example shows that the two topologies satisfy (**) but neither of them is COMP.

4.4 Example

The BTS $\left(\mathbb{R}, \tau_{m}, \tau_{N}\right)$ where
$\tau_{\mathrm{s}}=\left\{A \subseteq X: A^{\prime}\right.$ fivite $\} \cup\{\phi]$,
$\tau_{N}=\{\mathbf{G} \subseteq \mathbb{R}: \forall x \in \mathbf{G} \exists \mathrm{a}>0$ s.t. $(x-\varepsilon, x+$ e) $\subseteq 6\}$
satisfy (${ }^{* *}$), but neither ($\mathbb{R}, \tau_{\infty}$) nor $\left(\mathbb{R}, \tau_{N}\right)$ satisfies (4).

4.5 Theorem

Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a BTS $S^{* *}$. Then

$$
\text { 1. } C(A B B)=C(A) \square C(F) \text {, where }
$$

$$
\begin{equation*}
C(A)=\bar{A}^{2} \cap \bar{A}^{2}, \forall A \in P(X) \tag{9}
\end{equation*}
$$

\bar{A}^{j} denotes the closure of A w.r.t $\tau_{j}, j=1,2$;
2. $C(A)$ defined in (8) satisfies kuratowski's axioms and hence it generates a topology $\tau_{12}=\{A \subseteq X:(A)=A\}$, where the interior of A

$$
\mathfrak{L}(A)=\left(C\left(A^{r}\right)\right)^{\prime}(10)
$$

3. $\tau_{1 y}$ satisfies condition COMP

Proof.

1. it's clear that

$$
\begin{equation*}
C(A) \cup C(B) \subseteq C(A \cup B) \tag{11}
\end{equation*}
$$

Now, we want to prove the another inclusion
Let $x \in C(A \cup B)$. Then $x \in \overline{A \cup B}^{2}$ and $x \in \overline{A \cup B}^{2}$. Hence by condition COMP, there exists $y \in A \cup B$ such that $x \in \overline{\{y\}}^{2}$ and $z \in A \cup B$ such that $x \in\{z\}^{2}$.
we have the following cases:

- if $y, z \in A$ then $x \in \overline{\{y\}}^{1} \subseteq \bar{A}^{1}$ and $x \in \overline{\{z\}}^{2} \subseteq \bar{A}^{2}$
and hence $x \in \bar{A}^{1} \cap \bar{A}^{2}-C(A)$. It follows that $C(A \cup B)=C(A) \cup C(B)$.
- Similarly if $y, z \in B$.
- If $y \in A, z \in B$ and $x \in \overline{\{y\}}^{1} \cap \overline{\{z\}}^{2}$. Hence by (**) $y \in \overline{\{z\}}^{2}$ or $z \in \overline{\{y\}}^{2}$. It follows that $x \in \overline{\{z\}}^{2}$ or $x \in \overline{G y\}}^{2}$, and hence $x \in C(z)$ or $x \in C(y)$. it implies that $x \in C(B)$ or $x \in C(A]$, accordingly, $C(A \cup B) \subseteq C(A) \cup C(B)$
(12)

From (10) and (11) we get $C(A \cup B)=C(A) \cup C(B)$.

- Similarly if $y \in B, z \in A$.

2. Straightforward
3. Let $x \in C(A)$. Hence $x \in \bar{A}^{1} \cap \bar{A}^{2}$. It implies that there exists $y, x \in A$ such that $x \in \overline{\{y]}^{1} \cap \overline{\{z\}}^{2}$. Hence by (**) $y \in \overline{\{z\}}^{1}$ or $z \in \overline{\{y\}}^{2}$, and hence $x \in \overline{\{z\}}^{2}$ or $x \in \overline{y y\}}^{2}$. It follows that $x \in C(z)$ or $x \in C(y)$.
4.6 Theorem

There exists one-to-one correspondence between the family of all BP5 ${ }^{\circ}$ and family of all BT5 ${ }^{\circ}$.
Proof. It suffices to prove that

$$
\begin{equation*}
(*) \Leftrightarrow(* *) \tag{13}
\end{equation*}
$$

Let $\left.\left(\overline{(y)}^{1} \cap \overline{\{z\}}^{2}\right) \mathbf{N}, z, z\right\} \neq \phi$. Then there exists $x \in X$ such that $x \in\left(\frac{(y\}}{}{ }^{1} \cap \overline{\{z\}}^{2}\right) \backslash\{y, z\} \neq \phi$. Hence $x R_{1} y$ and $x R_{2} z$, and hence by $(*) y R_{1} z$ or $z R_{z} y$. It implies that $y \in \overline{\{z\}}^{1}$ or $z \in \overline{\{y\}}^{2}$. Necessity of (12) is similar

Corresponding author

A.Zakaria

Mathematics Department, Faculty of Education, Ain Shams University, Egypt.
amr_zakaria2008@yahoo.com

References

[1] Abdalla Tallafha, Adnan Al-Bsoul, Ali Fora, Countable dense homogeneous bitopological space. Tr. J. of mathematics, 23 (1999) 233242.
[2] M. E. ABD EL-MONSEF, A.A Abo Khadra, A.A. Zedan, On Biapproximation space,
[3] A. A. Allam, M. Y. Bakeir, E. A. Abo-tabl, Some methods for generating topologies by relations, Bull. Malays. Math. Sci. Soc., 31 (2008) 35-45.
[4] C. C. Chan, A rough set approach to attribute generalization in data mining, J. Inf. Sci., 107 (1998) 169-176.
[5] M. R. Chmielewshi and J. W. Grzymala-Busse, Global discretization of continuous attributes as preprocessing for machine learning, Int. J. Approx. Reason., 15 (1966) 319-331.
[6] B. Davvaz, Roughness in rings,Inf. Sci., 164 (2004) 147-163.
[7] B. P. Dvalishvili, The lower and Upper Topologies as Bitopological. Proc. Tbilisi state Univ., 55 (2003) 37-52.
[8] B. P. Dvalishvili, Bitopological Spaces: Theory, Relations with Generalized Algebraic Structures, and Applications, North Holland, 2005.
[9] Hua-Peng Zhang, Yao Ouyang, Zhudeng Wang, Note on "Generalized rough sets based on reflexive and transitive relations", Information Sciences, 179 (2009) 471-473.
[10] G. C. Kelly, Bitopological space. Proc. London Math. Soc., 13 (1963) 71-89.
[11] M. Kondo, On the structure of generalized rough sets, information sciences, 176 (2006) 589-600.
[12] R .Koppermqn, J. D. Lawson, Bitopological and Topological orderd K-spaces. Topology and its Applications 146-147,385-396, 2005.
[13] E. P. Lane, Quasi-proximities and bitopological space, Portugal Math. 28 (1969) 181-159.
[14] H. J. Lee, J. B. Park, and Y. H. Joo, Robust load-frequency control for uncertain nonlinear power systems: A fuzzy logic approach, Inf. Sci., 176 (2006) 3520-3537.
[15] W. N. Liu, Y. JingTao and Y. Yiyu, Rough approximations under level fuzzy sets, in Proc. 4th Int. Conf., RSCTC, S. S. Tsumoto, K. J. Roman et al. Eds., (2004) 78-83.
[16] D. Mcsherry, Knowledge discovery by inspection, Decis. Support Syst., 21 (1997) 43-47.
[17] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982) 341-356.
[18] Z. Pawlak, Rough set approach to knowledge-based decision support, Eur. J. Oper. Res., 99 (1997) 48-57.
[19] Z. Pawlak, A. Skowron, Rudiments of rough sets, Information Sciences, 177 (2007) 3-27.
[20] Z. Pawlak, A. Skowron, Rough sets: some extensions, Information Sciences, 177 (2007) 28-40.
[21] Z. Pawlak, A. Skowron, Rough sets and Boolean reasoning, Information Sciences, 177 (2007) 41-73.
[22] J. F. Peters, K. Ziaei, and S. Ramanna, Approximate time rough control: Concepts and application to satellite attitude control, in Proc. RSCTC, (1998) 491-498.
[23] J. C. Pomerol, Artificial intelligence and human decision making, Eur. J. Oper. Res., 99 (1997) 3-25.
[24] K. Qin, J. Yang, Z. Pei, Generalized rough sets based on reflexive and transitive relations, information sciences, 178 (2008) 4138-4141.
[25] A. Skowron, J. Stepaniuk, Tolerance approximation spaces, Fundamenta Informaticae 27 245-253, 1996.
[26] M. E. Yahia, R. Mahaod, N. Sulaiman, and F. Ahamad, Rough neural expert systems, Expert Syst. Appl., vol. 18, no. 2, pp. 87-99, Feb. 2000.
[29] Y.Y. Yao, Two views of the theory of rough sets in finite universes, International Journal of Approximate Reasoning 15 291-317, 1996.
[28] Y.Y. Yao, Constructive and algebraic methods of the theory of rough sets, Information Sciences 109 21-47, 1998.
[29] Y.Y. Yao, T Y Lin, Generalization of rough sets using modal logics, Intelligent Automation and Soft Computing 2 103-120, 1996.

