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Abstract: We used preordered relations to define a bipreordered space and hence bitopological space and 

introduced a condition (*) on these relations such that , where 

, and hence we get a topology  on  satisfies 

  

and  .We deal with bitopological spaces  which satisfying a certain 

condition (**) and proved that the family of all such bitopological spaces BT  is equivalent to the family of 

all bipreordered spaces BP . 
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1. Introduction 

A classic paper of Z. pawlak [17] is the Rough 
Sets (RS), published in 1982, which declared the 
birth of the RS theory. A lot of mathematicians, 
logicians, and researchers of computers have 
become interested in the RS theory and have done a 
lot of research work of RS in theory [6, 14, 15] and 
application. Its applications are showed in wide 
fields such as machine learning [5], data mining [4], 
decision- making support and analysis [16, 18, 23], 
process control [22] and expert system [26]. 

Different kinds of generalizations of pawlak 
RS model can be obtained by replacing the 
equivalence relation with an arbitrary binary 
relation [3, 19, 20, 25]. It was proved that, the pair 
of lower and upper approximation operators 
induced by reflexive and transitive relations is 
exactly a pair of interior and closure operators of a 
topology [27, 29]. Some surveys of RS theory and 
applications are presented in [21, 28]. Many 
properties of RS were obtained when the 
approximation space is finite. When the universe is 
infinite, the relationship between generalized RS 
induced by binary relation and topologies were 
investigated in [11] and [24]. In [11], a kind of 
compactness condition (comp) was proposed and it 
was proved that a topology which satisfies (comp) 
can determine the lower and upper approximation 
operators induced by reflexive and transitive 
relation. In [24], the topology induced by reflexive 
and transitive relation does not satisfy (comp) in 
general. Another kind of compactness condition 
(COMP) is proposed and it is proved that there 
exists a one-to-one correspondence between the set 
of all reflexive and transitive relations and the set of 
all topologies which satisfy condition (COMP). 

 

The formation and progress of the theory of 
bitopological spaces introduced in [10]. The theory 
acquires special importance in the light of 
applications of its results. The theory of 
bitopological space has been developed in [1, 7, 8, 
12]. 

the order relations used to define a topology or 
bitopologies on a set  were often equivalence 
relations (e.g.[2]). In this paper we used only 
preordered relations(i.e. reflexive and transitive) to 

define topologies, however,  still 

does not hold, where , so, we 
introduced the condition (*) for preordered relations 

 and  making the preceding equality holds and 
hence we could generate a topology by two 
preordered relations,  and proved that for all 

,  

 
and many other properties are proved , 

especially,  and many 

examples on finite and infinite universes are given. 
If a bitopological space  is given, we 
introduced a condition (**) such that 

 becomes hold, and 
hence we obtained a topology 

 and proved that 
there exists a one-to-one correspondence between 
the family of all bitopological space satisfying the 
condition (**) which denoted by BT  and the 
family of all bipreordered spaces satisfying (*) 
which denoted by BP .  

  
2. Material and Methods 
2  Preliminaries 
2.1  Definition[3] 
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 Let  be any relation on ,  and . 
The afterset(foreset) of  is defined respectively, by  

, , 
 and the upper(lower) approximation of  is defined 
by 
  

  (1) 
  

   (2) 
. 
2.2  Theorem[24] 

If  is reflexive, then the operator  on , 

defined by (1), is ech closure operator and hence it 
generates a topology on  given by  
  

  (3) 

 Moreover, if  is a preorder relation on , 

then  satisfies kuratowski's axioms i.e. for all 

,  represents the closure of  w.r.t. the 
induced topology  and  satisfies the following 
condition 
 

 (4) 
 

Let  be a topological space (TS) and  
be its closure operator. We define a preorder 
relation on  by:  

  (5) 
  
2.3  Theorem[24] 

Let  be a TS,  be its closure operator 
and  be as defined in (5). If  satisfies the 
condition (4), then:  

    1.    
    2.  , where  defined in (3)  
    3.    

  
2.4  Lemma 

If  and  are two preorder relations on a 
non empty set , then 
  

 
  
Proof. Straightforward. 
  
2.5  Theorem[9] 

Let  be a TS. Then the following are 
equivalent:   
    1.   satisfies the condition (4)  
    2.    

    3.   is an Alexandrov space.  
  
2.6  Theorem[24] 

There exists a one-to-one correspondence 
between the family of all preorder relations on  
and the family of all topologies which satisfies (4). 

 
 
3  Bipreordered Spaces 
3.1  Definition 

Let  and  be two preorder relations on a 
non empty set . Then  is called 
bipreordered space (BPS).  
 
3.2  Lemma 

Let  be a BPS. Then pre-upper 

approximation operator  given by:  

   (6) 

where ,  be defined in (1), satisfies the 
following properties:   

    1.    

    2.    

    3.    

    4.    

    5.    

    6.    
  
Proof. Straightforward 
. 

The following example shows 

that .  
 
3.3  Example 
Let

 and  Then . 
  
3.4  Definition 

The BPS  is called BP  if it 
satisfies the following condition 
(*): If , then  or .  
 
3.5  Examples 

Let  be a non empty set,  and . 
Then the following spaces  are examples 
for BP    
1. , 

 
2. , 

  
  
3.6  Theorem 
If  is BP , then   

    1.  , where  as 
defined in(1)  

    2.    
    3.  If we define  then 

 is a topology on . Moreover, 

, where  is the 
closure of  w.r.t. ,   
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Proof.   
    1.  By Lemma (3.2).2   

  (7) 

Let . Then  and 

 i.e.  and 
, i.e. there exists 
 and . 

We have the following cases:   
- If  then  and  

which implies that  and then 

.  
 
- Similarly if . 
- If ,  and , , hence by 
(*)  or . Since  are transitive we 
have  or , and hence 

 or 

. Hence  or 

, accordingly,  

  (8) 

From (6) and (7) we get .  
 
- Similarly if .  

2.  Let . Then  and , i.e. 
 and , i.e. there exists 

 and , hence by (*)  
or . Since  are transitive we have  
or  and hence , 

i.e. . 

 is trivial. 3.  
Straightforward.  
 
3.7  Theorem 
Let  be a BP . Then  satisfies 

condition (4).  
 

Proof. Let . It follows that  and 

hence , i.e. . 
  
3.8  Theorem 
Let  be a BP . Then the family 

 is a basis for . 

 
Proof. Let  be an open subset of . It follows 
that  and hence . 
  
3.9  Lemma 
Let  be a BP . Then   
    1.  Since  is the smallest possible 
neighborhood of   
    2.  A subset  of  is open if and only if 

.  
  
Proof.   

1.  Since  and  are reflexive relations. Then 
 , hence  is a 

neighborhood of x. 
Let  be any neighborhood of . It follows that 

, 

hence , i.e.  is the 
smallest possible neighborhood of .  
    2.  By Theorem 3.8. the result follows 
immediately.  
  
3.10  Theorem 
If  is BP , then  

 
  
Proof. For simplicity put . 

, for all . Then the result.  
  
3.11  Theorem 
If  is BP , then  

 
i.e.  is the least upper bound topology 

containing .  

Proof. We want to show that  and 

the other inclusion is clear. 
Let . Then 

 
, by 

theorem 3.6(1) 
, by (1) 

. Hence , and then . 

  
4  Special Kinds of Bitopological Spaces 
4.1  Definition 
The bitopological space (BTS)  is called 
BT  if it satisfies the following condition 

(**):  or 

, where  and  satisfy the condition (4).  
4.2  Example 
Let  be a non empty set,  and  Then 
the following spaces  are examples for 
BT    
    1.  

  
    2.  

 
The following example shows that the two 
topologies satisfy (**) but one of them does not 
satisfy (4)  
 
4.3  Example 
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Let  be an infinite set and . The BTS 
 where 

, 
. Then each of ,  

satisfies (**) and  does not satisfy (4). 
The following example shows that the two 
topologies satisfy (**) but neither of them is 
COMP. 
  
4.4  Example 
The BTS  where 

, 

 satisfy (**), but neither  nor  
satisfies (4).  
 
4.5  Theorem 
Let  be a BT . Then   
    1.  , where   

  (9) 

 denotes the closure of  w.r.t ;  

    2.   defined in (8) satisfies kuratowski's 
axioms and hence it generates a topology 

, where the interior of    
  (10) 
  
    3.   satisfies condition COMP  
  
Proof.   
1.  it's clear that   
  (11) 
Now, we want to prove the another inclusion 

Let . Then  and 

. Hence by condition COMP, there 

exists  such that  and  

such that . 
 
we have the following cases:   

- if  then  and  

and hence . It follows that 
.  

- Similarly if .  

- If  and . Hence by 

(**)  or . It follows that  

or , and hence  or . it 
implies that  or , accordingly,   
  (12) 
From (10) and (11) we get 

.  
- Similarly if .  
  
2.  Straightforward  

3.  Let . Hence . It implies 

that there exists  such that . 

Hence by (**)  or , and hence 

 or . It follows that  or 
.  

4.6  Theorem 
There exists one-to-one correspondence between 
the family of all BP  and family of all BT . 
Proof. It suffices to prove that   
  (13) 

Let . Then there exists 

 such that . 
Hence  and , and hence by (*)  or 

. It implies that  or . 
Necessity of (12) is similar 
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