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Abstract: In this paper, we study a resource-constrained project scheduling problem in which a set of project 

activities have due dates. If the finish time of each one of these activities is not equal to its due date, an earliness or a 

tardiness cost exists for each tardy or early period. The objective is to minimize the sum of discounted weighted 

earliness-tardiness penalty costs of these activities. Scatter Search algorithm is used to deal with this extended form 

of resource-constrained project scheduling problem. Our implementation of Scatter Search integrates the advanced 

methods such as dynamic updating of the reference set and the use of frequency-based memory within the 

diversification generator. Finally, some small and medium size test problems are examined and the computational 

results are presented. The computational results show the efficiency of the proposed meta-heuristic procedure. 
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1. Introduction 

The resource-constrained project scheduling 

problem (RCPSP) involves the scheduling of project 

activities subject to precedence constraints as well as 

renewable resource restrictions in order to minimize 

the make span of the project. The RCPSP under 

minimization of the sum of weighted earliness-

tardiness costs (RCPSPWET) is an altered version of 

the RCPSP in which all assumptions and constraints 

of the RCPSP are held but the objective has changed. 

In this paper, we extend the RCPSPWET problem by 

taking into account the time value of earliness and 

tardiness costs. We call this problem the RCPSP-

DCWET (Resource-Constrained Project Scheduling 

Problem with Discounted Cash Flows of Weighted 

Earliness-Tardiness Costs). In the RCPSPWET we 

assume that a set of project activities have due dates. 

For each one of these activities if due date is not met, 

a penalty cost exists for each tardy or early period. 

Considerable number of exact and heuristic 

methods has been presented in the literature for the 

RCPSP problem with the discounted cash flow, 

known as RCPSPDC. Russell (Russell, 1986) studied 

unconstrained resource project scheduling problem 

with positive and negative cash flows and formulated 

a non-linear programming model. Elmaghraby and 

Herroelen (Elmaghraby and Herroelen, 1990) 

presented an optimal algorithm based on tree 

structures in activity on arch (AOA) network. Etgar 

et al. (Etgar et al., 2003) examined the AOA network 

of a project scheduling problem assuming that cash 

flows are associated with events. Shtub and Etgar 

(Shtub and Etgar, 1997) also offered an exact method 

to solve the NPV problem with a branch-and-bound 

approach. Etgar and Shtub again took into account 

special version of this problem in which cash flows 

are linear functions of the events realization times. 

Vanhoucke et al. (Vanhoucke et al., 2001c) 

considered a fixed deadline for the unconstrained 

max-npv problem.  

Some recent studies on the RCPSPDC 

problems are presented by (Icmeli and Erenguc, 

1996), (Smith-Daniels and Aquilano, 1987) and 

(Vanhoucke et al., 2001a). Doersch, and Patterson 

(Doersch, and Patterson, 1977) formulated the 

RCPSPDC with a zero-one integer programming 

model. Yang et al. Yang et al. (Yang et al., 2003) 

developed a branch and bound method to tackle this 

problem. Baroum and Patterson (Baroum and 

Patterson, 1996) developed a branch and bound 

algorithm for an activity on node (AON) network 

with non-negative cash flows associated with the 

activities. Heuristic approaches to the RCPSPDC 

have been proposed in (Sepil and Ortac, 1997) and 

(Smith-Daniels and Aquilano, 1987). Some recent 

surveys on the RCPSPDC are mentioned in 

(Demeulemeester and Herroelen, 2002). Yang et al. 

(Yang et al., 1995) developed nine stochastic 

scheduling rules to solve the RCPSPDC problem. 

Baroum and Patterson (Baroum and Patterson, 1996) 
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introduced a number of priority rule heuristics and 

discovered their differences based on computational 

experiments. Pinder and Maruchech (Pinder, and 

Maruchech, 1996) proposed and compared new 

scheduling heuristics with different well-known 

rules. Van houcke (Vanhoucke, 2010) presented a 

scatter search algorithm for the resource-constrained 

project scheduling problem with discounted cash 

flows. He assumed fixed payments associated with 

the execution of project activities and developed a 

heuristic optimization procedure to maximize the net 

present value of the project subject to the precedence 

and renewable resource constraints. 

Another non-regular performance measure, 

which is gaining attention in just in time 

environments, is the minimization of the weighted 

earliness-tardiness penalty costs of the project 

activities (Demeulemeester and Herroelen, 2002). In 

this problem setting, activities have an individual 

activity due date with associated unit earliness and 

unit tardiness penalty costs. If an activity has been 

accomplished earlier or later than the predetermined 

due date, the earliness or tardiness penalty cost can 

be imposed. The objective then is to schedule the 

activities in order to minimize the weighted penalty 

cost of the project subject to the precedence 

constraints. On the basis of classification scheme 

introduced by Herroelen et al. (Herroelen et al., 

1999) the problem can be categorized as 

cpm|early|tardy. This problem, also known as min-

wet problem, is experienced by many firms 

outsourcing all or some of their activities, such as 

hiring subcontractors, maintenance crews as well as 

research teams. Costs of earliness include additional 

inventory requirements and idle times and implicitly 

incur opportunity costs. Tardiness may cause 

customer dissatisfaction or complaints, loss of 

reputation and profits, monetary penalties and 

goodwill impairment. Nadjafi and Shadrokh (Nadjafi 

and Shadrokh, 2009) studied unconstrained resource 

project scheduling problem considering the time 

value of the money by continuous discounting the 

cash flows and minimum as well as maximum time-

lags between different activities. They proposed a 

branch and bound algorithm for this project 

scheduling problem with generalized precedence 

relations among activities. The literature on solution 

procedures for the weighted earliness-tardiness 

project scheduling problem (WETPSP) is very 

limited. Vanhoucke (Vanhoucke, 2001) developed an 

exact recursive search algorithm for unconstrained 

resource project scheduling problem. The algorithm 

makes use of the primary idea that each project’s 

earliness-tardiness costs can be minimized by first 

scheduling activities at their due dates or at a later 

immediate time if compulsory due to obligatory 

precedence constraints, followed by a recursive 

search which figures out the optimal movement for 

those activities for which a shift towards time zero 

demonstrates to be favorable. Vanhoucke et al. 

(Vanhoucke et al. 2000) used the logic of the 

recursive approach to solve the WETPSP problem in 

their branch and bound method for maximizing the 

net present value of a project in which progress 

payment takes place. Kazaz and Sepil (Kazaz and 

Sepil, 1996) solved the WETPSP problem with 

benders decomposition method. Sepil and Ortac 

(Sepil and Ortac, 1997) proposed heuristics for the 

related project scheduling problem under renewable 

resource constraints. Vanhoucke et al. (Vanhoucke et 

al., 2001b) proposed a branch and bound algorithm to 

solve the Resource-Constrained Project Scheduling 

Problem with Weighted Earliness-Tardiness Penalty 

Costs (RCPSPWET).  

In this paper, we extend the RCPSPWET 

problem by considering the time value of money. 

This problem is denoted as Resource- Constrained 

Project Scheduling Problem with Discounted Cash 

Flows of Weighted Earliness-Tardiness Costs 

(RCPSP-DCWET). We propose a meta-heuristic-

based Scatter Search approach to solve the RCPSP-

DCWET in the following sections. 

This paper is organized as follows. We 

commence in Section 2 with the problem modeling 

and formulation. In Section 3 we describe our 

schedule representation scheme. In section 4, we 

briefly review the literature on Scatter Search 

Algorithm and describe our approach for solving the 

RCPSP-DCWET problem. Computational results are 

presented in Section 5. Finally, we end with the 

conclusions in Section 6.  

 

2. Problem modeling and formulation 

The RCPSPWET problem minimizes the 

weighted earliness-tardiness costs under resource 

constraints. The project network is depicted by an 

AON representation where the set of nodes N denotes 

activities and the set of arcs A indicates finish to start 

precedence constraints with a zero time lag. Dummy 

activities 1 and n correspond to start and completion 

of the project. The list of activities is topologically 

numbered, i.e., each predecessor of every activity has 

a smaller number than the number of activity itself.  

     The parameters of the model are: 

D = The set of activities with due date, 

 = Earliness penalty cost of activity i, 

ti = Tardiness penalty cost of activity i, 

di= Duration of activity i, 

hi = Due date of activity i, 

A= The set finish to start precedence constraints with 

      a zero time lag, 
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N = The set of activity nodes, 

rik= The resource requirement of activity i for 

         resource type k, 

m = The total number of resource types, 

ak = The availability of the k
th

 resource type, 

T=  The feasible project length, 

    The variables of the model are: 

fi = The completion time of activity i, 

Ei= The earliness of activity i determined by: 

        Ei= max {0, hi-fi}, 

Ti = The tardiness of activity i determined by: 

          Ti = max{0, fi- hi}, 

S(t) = The set of activities that are in progress in time 

           period ]t-1,t], 

The RCPSPWET can be formulated as follows 

(Vanhoucke et al., 2001b). 

Minimize + )                      (1) 

  Subject to: 

                            (2) 

                                  (3) 

                                  (4) 

                                                       (5) 

         (6) 

                                      

    

             (7) 

 

The objective function (1) is to minimize the 

weighted earliness-tardiness cost of the project,  and 

 denote the unit cost of earliness and tardiness for 

activity i. Equation (2) forces the finish to start 

precedence constraints among activities. Equation (3) 

and (4) determine the earliness  and tardiness of 

each activity . Constraint (5) forces the completion 

time of dummy start activity to be at zero time. 

Equation (6) introduces the resource constraints. 

Equation (7) ensures that the activity completion 

times, earliness and tardiness of activities are non-

negative integer values. 

 

 Problem Model for the RCPSP-DCWET  

In the real world problems, time value of 

money plays an important role in managerial decision 

making. Hence, we incorporate Net Present Value 

(NPV) into the basic form of the RCPSPWET by 

discounting the cash flow. A continuous discount rate 

of α is chosen to determine the amount of net present 

value. Subsequently the continuous discounted factor 

represents the present value of each unit of 

money paid at the end of period T, using the discount 

rate α. Only the objective function of the RCPSP-

DCWET is different from the model of the 

RCPSPWET. The object of this problem is to 

minimize the net present value of the sum of the 

earliness-tardiness costs of the activities with due 

dates, and can be formulated as follows: 

      
subject to constraints (2) to (7) in the RCPSPWET 

model. 

It is easy to show that the RCPSP-DCWET 

is an extended form of the Resource-constrained 

Project Scheduling Problem (RCPSP). Since the 

RCPSP is NP-hard, the RCPSP-DCWET is NP-hard 

too (Blazewicz et al., 1983). 

 

3. The schedule representation scheme  

Knowing the RCPSP-DCWET is NP-hard, 

we have to abstain from always struggling to solve 

the corresponding problem instances optimally. 

Sometimes, the required computation time will just 

be huge and project managers might effortlessly tend 

to practical project schedules that are gained within 

small computation times. This necessity can only be 

achieved by employing noble heuristic procedures.  

We use the serial schedule generation scheme 

(SSGS) for scheduling activities. This schedule 

generation scheme (SGS) in line with the parallel 

schedule generation scheme are two basic ones which 

have the most efficiency and applications, but usually 

the serial schedule generation scheme results in better 

outcomes than the parallel schedule generation 

scheme. In Lova et al. (Lova, et al., 2006) these two 

schedule generation schemes have been compared in 

different heuristics and serial schedule generation 

scheme have generally resulted better. The SSGS 

adds activities to the schedule until a feasible 

accomplished schedule is generated. In each it 

iteration, the next activity in the priority list is chosen 

and for that activity the first possible starting time is 

assigned such that no precedence or resource 

constraint is violated. 

We represent a schedule S of the RCPSP-

DCWET by a list of activities (s1,s2,s3,…sn) where si 

represents the starting time of activity i. We apply the 

topological order (TO) condition (Valls, et. al, 2003) 

by first scheduling the activities using a serial SGS 

(SSGS) and then sequencing them in non-decreasing 

order of their finish times, i.e. for all i and j, if fi(S) < 

fj(S), where fi(S) and fj(S) indicate the finish time of 

activities i and j in schedule S, respectively, activity i 

appears before activity j in the topological ordered 

activity list. The benefit of this method is that 

although several activity lists can yield the similar 

scheduling using a SSGS, each topological order 



Life Science Journal, 2011;8(2)                                                                http://www.lifesciencesite.com 

 

http://www.sciencepub.net/life         lifesciencej@gmail.com 
 

637 

matches a unique schedule, excluding the case of 

same activity finish times.  

 

4. Our scatter search approach 

Scatter Search was first introduced by 

Glover (Glover, 1977) as a Meta heuristic method 

that uses a sequence of matched initializations to 

generate solutions. Scatter Search is an evolutionary 

population-based algorithm that combines the 

solutions to obtain new solutions using convex or 

non-convex linear combinations. The approach of 

combining existing solutions to generate new ones 

dates back to 1960s. The intention of this 

combination mechanism is to integrate both diversity 

and quality. Recent studies demonstrate the empirical 

advantages of this meta-heuristic approach for 

solving a diverse array of optimization problems 

from both classical and real world settings. We refer 

the reader to (Marti, 2006) for more information on 

Scatter Search (SS) algorithm. The general pseudo-

code for any Scatter Search method can be outlined 

as follows: 

 

Algorithm Scatter Search 

Diversification Generation Method to 

produce a pool of various trial solutions, using a 

random trial solution (or seed solution) as an input. 

     While Stop Criterion not met: 

     Improvement Method to convert a trial solution 

into one or more improved trial solutions (Neither the 

input nor the output solutions are required to be 

feasible, though the output solutions will more 

generally be likely to be so. If no improvement of the 

input trial solution results, the "improved" solution is 

considered to be the same as the input solution.) 

      Reference Set Update Method to construct and 

uphold a reference set consisting of the b "best" 

solutions found (where the value of b is usually 

small, e.g., no more than 20), structured to yield 

efficient accessing by other parts of the method. 

Solutions acquire membership to the reference set in 

accordance with their quality or their diversity. 

     Subset Generation Method to perform on the 

reference set, to generate a subset of its solutions as a 

base for building combined solutions. 

     Subset Combination Method to transform a 

particular subset of solutions created by the Subset 

Generation Method into one or more combined 

solution vectors. 

 

Scatter Search Illustration 

In the following, we describe our Scatter 

Search algorithm for solving the proposed RCPSP-

DCWET problem. 

     1. Start with P = Ø. Use the diversification 

generation method to construct a solution and apply 

the improvement method. Let x be the resulting 

solution. If x ∉ P then add x to P (P = P ∪ x), 

otherwise, discard x. 

Repeat this step until |P| = P Size. 

     2. Use the reference set update method to build 

Ref Set = { x1, ., xb } with the best b solutions in P. 

Order the solutions in Ref Set according to their 

objective function value such that x1 is the best 

solution and xb the worst. 

Make New Solutions = TRUE. 

     while ( New Solutions ) do 

          3. Generate New Subsets with the subset  

                generation method. New Solutions = 

                FALSE. 

     while ( New Subsets ≠ ∅ ) do 

          4. Select the next subset s in New  

                Subsets. 

          5. Apply the solution combination 

                method to s to obtain one or more new 

               trial solution x. 

          6. Apply the improvement method to 

               the trial solutions. 

          7. Apply the reference set update 

               method. 

     if Ref Set has changed then 

     8. Make New Solutions = TRUE. 

     end if 

     9. Delete s from New Subsets. 

The above nine-step procedure briefly illustrates the 

primary framework of our algorithm. At the first 

stage, an initial population P including |P| solutions 

is generated. Next, the initial population P is 

arranged in non-descending order based on their 

objective functions. In another word, the first solution 

of P is the best solution (with the lowest objective 

function) so far. At the third stage, the reference set 

of high quality solutions, RefSet1 is built. RefSet1 

comprises b1 solutions with the low objective 

functions. The solutions of RefSet1 are deleted from 

the list of P initial solutions.  

RefSet1= . The initial population P is 

updated: . At the next stage, the 

reference set of diverse solutions, RefSet2 is 

constructed by the following approach: for each 

initial solution of P, the minimum distance from the 

RefSet1 solutions is calculated and the initial solution 

with the maximum distance from the RefSet1 

solutions is selected, deleted from P and entered 

RefSet2: 

 

 
Where  is the Euclidean distance 

between x and y. This step is repeated b2 times until 

the RefSet2 is completed. Hence, RefSet2 contains 

solutions with high diversity (b=b1+b2). At the next 

stage, the new subsets are produced from r solutions 
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selected from RefSet1 and RefSet2.The number of 

constructed subsets can be determined                     

by: .To describe the combination method, 

we consider the following procedure. Assume we 

have a precedence feasible solution in which [i]l 

represents the activity i located at position land 

similarly [j]u denotes the activity j situated at position 

u. If we swap activities [i] and [j], we obtain a new 

solution, which may not be precedence feasible. 

Suppose that activity [j] in position l denoted by [j]l is 

precedence feasible and we are seeking for a 

precedence feasible solution which has activity [j] in 

position l. For this purpose, we start from position l + 

1 and move forward, at each position, say position p, 

if the activity at position u of the current solution is 

the precedence of activity x in position p denoted by 

[x]p, we swap these two activities in position p and u. 

This move is continued till p = u and we gain the 

desired precedence feasible solution. 

The solutions of each subset are combined to 

gain preliminary solutions to implement an 

improvement method. The result of the improvement 

procedure can trigger the reference set and even the 

solution population to be updated. Three 

improvement procedures are employed in our 

solution method to enhance the efficiency of the 

algorithm. The first improvement procedure 

randomly selects a project activity and tries to shift it 

as the closest as possible to its due date hi without 

violating the precedence constraints and the resource 

restrictions. The second and third improvement 

procedures are executed simultaneously. The second 

method combines two solutions selected from the 

reference set and check the feasibility. Then the first 

improvement procedure runs automatically. The third 

improvement method takes into account the earliness 

or tardiness of all project activities and then finds the 

maximum value of them and attempts to shift that 

activity close to its due date considering the 

precedence constraints. 

In the next step, step 6, we exploit the Dynamic 

Reference Set Updating rule (Ref Set Update 

Method) as it is likely all the reference solutions are 

similar and the Scatter Search Methodology will 

possibly be unable to improve upon the best solution 

found to execute combinations or improve new trial 

solutions. The new solution is entered in RefSet1 

provided its objective function is better than the 

worst solution in current Ref Set denoted by xb1. In 

our minimization problem, if f(x) < f(xb1), x is 

replaced by xb1 and RefSet1 is automatically updated. 

Similarly, the new solution is entered into RefSet2 if 

its minimum distance from the solutions of RefSet1 

is more than the minimum distance of solution in 

RefSet2 form solutions in RefSet1, d(x) > d(xb). In 

another word, while RefSet1 contains the best 

solutions found so far, RefSet2 is rebuilt from scratch 

during each iteration. 

The main advantage of this method is that the 

undesireable solutions are taken out from the 

reference set sooner and consequently the next 

combined solutions will be better. The combination 

procedure is narrowed by the reference set which is 

used as input.  

 

5. Computational Result 

In this section, we demonstrate the 

performance of our proposed Scatter Search 

algorithm on the problem instances generated by 

Random Network Generator RanGen 

(Demeulemeester et al., 2003). Each project test 

problem has been extended by activity due dates, and 

unit penalty costs for the earliness and tardiness of 

the activity completions 

For the simplicity of illustration, we suppose 

the unit earliness costs are equal to the unit tardiness 

costs. Using fine tuning, we set the size of initial 

population to |P| = 10b, the size of RefSet1, b1 to 

0.75b and the size of RefSet2, b2 to 0.25b. 

Consequently for the test problems, the parameters 

are set as follows: |P| = 200, b = 20, b1 = 15, b2 =5, 

and daily discount rate α = 0.01(1%). 

The Scatter Search procedure has been coded in 

MATLAB version R2008A under Windows 7 and 

performed all computational experiments on a laptop 

(CPU 2.53 GHz processor, and 2 GB of internal 

memory). 

In order to evaluate the performance of the 

proposed Scatter Search Algorithm, We have 

generated a problem set of 192 instances using the 

Random Network Generator RanGen 

(Demeulemeester et al., 2003). The test problems 

were generated on the basis of a full factorial design 

of three parameters, i.e., the number of activities (n), 

the network shape parameter order strength (OS), and 

the resource factor (RF). We considered four values 

10, 20, 30, and 50 for n, three values 0.25, 0.50 and 

0.75 for OS and four values 0.25, 0.50, 0.75 and 1.00 

for RF. For each combination of n, OS and RF, we 

generated four test instances resulting in 

4*3*4*4=192 with two resource types. The test 

problems were extended with unit earliness-tardiness 

penalty costs for each activity which were randomly 

selected from the interval 1 and 10. The due dates 

were generated in the same way as described by 

Vanhouckeet et al. (Vanhouckeet et al., 2000). We 

generated random numbers between 1 and maximum 

due date. The numbers were sorted and assigned to 

the activities in increasing order. Activity durations 

were randomly selected from the interval 1 and 10. 

We also considered the maximum number of 10,000 
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generated schedules as the termination criterion for 

our Scatter Search algorithm. 

     Table.1 represents the average CPU-time 

and its standard deviation in second for a different 

number of project activities. Comparing these results 

with the results obtained by the branch and bound 

algorithm shown in Table.2, we find out the proposed 

Scatter Search procedure attains the results close to 

the optimal in less time comparing with the exact 

branch and bound algorithm for the problems with 

20, 30 and 50 activities. Also the percentage 

deviations shown in Table.1 are negligible and prove 

the credibility of the algorithm. 

 

Table.1. The average CPU-time and the standard 

deviation which Scatter Search algorithm needed to 

solve RCPSP-DCWET with a different number of 

activities 

Number of 

activities 

Number of 

Problems 

Average 

CPU-time 

Standard 

Deviation 

10 48 0.274 0149 

20 48 0.388 0.341 

30 48 0.736 0.685 

50 48 1.649 0.967 

 

Table.2. The average CPU- time and the standard 

deviation which Branch and Bound algorithm needed 

to solve RCPSP-DCWET with a different number of 

activities 

Number of 

activities 

Number of 

Problems 

Average 

CPU-time 

Standard 

Deviation 

10 48 0.002 0.003 

20 48 1.476 6.857 

30 48 14.389 32.073 

50 48 2135.517 4651.966 

 

Table.3. The effect of the Order Strength (OS) for 

the RCPSP-DCWET 

OS factor Average CPU-time 

0.25 1.034 

0.50 0.728 

0.75 0.523 

 

Table.4. The effect of the Resource Factor (RF) for 

the RCPSP-DCWET 

RF factor Average CPU-time 

0.25 0.531 

0.50 0.685 

0.75 0.834 

1.00 0.997 

 

6. Conclusions 

In this paper, we introduced the extended 

form of the problem of minimizing weighted 

earliness-tardiness penalty costs in the resource-

constrained project scheduling by taking into account 

the continuous discounted negative cash flows for the 

first time. Negative cash flows are considered where 

an activity is accomplished earlier or later than its 

predetermined due date and negotiated penalty costs 

may be applied to it. We employed the meta-

heuristic-based Scatter Search procedure to tackle 

this project scheduling problem. The computational 

results clearly show that the proposed Scatter Search 

algorithm is effective in solving this kind of 

combinatorial optimization problem. An interesting 

research topic that can be examined in the future is 

developing other meta-heuristic algorithms and 

benchmarking them for the problem described in this 

paper. 
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